• Previous Article
    The asymptotic limits of solutions to the Riemann problem for the scaled Leroux system
  • CPAA Home
  • This Issue
  • Next Article
    Stability and convergence of an hybrid finite volume-finite element method for a multiphasic incompressible fluid model
March 2018, 17(2): 413-428. doi: 10.3934/cpaa.2018023

The regularity of some vector-valued variational inequalities with gradient constraints

Department of Mathematics, UC Berkeley, Berkeley, CA 94720, USA

Received  April 2015 Revised  October 2015 Published  March 2018

We prove the optimal regularity for some class of vector-valued variational inequalities with gradient constraints. We also give a new proof for the optimal regularity of some scalar variational inequalities with gradient constraints. In addition, we prove that some class of variational inequalities with gradient constraints are equivalent to an obstacle problem, both in the scalar case and in the vector-valued case.

Citation: Mohammad Safdari. The regularity of some vector-valued variational inequalities with gradient constraints. Communications on Pure & Applied Analysis, 2018, 17 (2) : 413-428. doi: 10.3934/cpaa.2018023
References:
[1]

H. Brezis and M. Sibony, Équivalence de deux inéquations variationnelles et applications, Arch. Rational Mech. Anal., 41 (1971), 254-265. doi: 10.1007/BF00250529.

[2]

H. Brezis and G. Stampacchia, Sur la régularité de la solution d'inéquations elliptiques, Bull. Soc. Math. France, 96 (1968), 153-180.

[3]

L. A. Caffarelli and N. M. Riviére, The Lipschitz character of the stress tensor, when twisting an elastic plastic bar, Arch. Rational Mech. Anal., 69 (1979), 31-36. doi: 10.1007/BF00248408.

[4]

L. C. Evans, A second-order elliptic equation with gradient constraint, Comm. Partial Differential Equations, 4 (1979), 555-572. doi: 10.1080/03605307908820103.

[5]

A. Friedman, Variational Principles And Free-Boundary Problems, Pure and Applied Mathematics, John Wiley & Sons, Inc. , New York, 1982, A Wiley-Interscience Publication.

[6]

C. Gerhardt, Regularity of solutions of nonlinear variational inequalities with a gradient bound as constraint, Arch. Rational Mech. Anal., 58 (1975), 309-315. doi: 10.1007/BF00250293.

[7]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations Of Second Order, Classics in Mathematics, Springer-Verlag, Berlin, 2001.

[8]

H. Ishii and S. Koike, Boundary regularity and uniqueness for an elliptic equation with gradient constraint, Comm. Partial Differential Equations, 8 (1983), 317-346. doi: 10.1080/03605308308820271.

[9]

R. Jensen, Regularity for elastoplastic type variational inequalities, Indiana Univ. Math. J., 32 (1983), 407-423. doi: 10.1512/iumj.1983.32.32030.

[10]

C. Mariconda and G. Treu, Gradient maximum principle for minima, J. Optim. Theory Appl., 112 (2002), 167-186. doi: 10.1023/A:1013052830852.

[11]

R. T. Rockafellar, Convex Analysis, Princeton Mathematical Series, No. 28, Princeton University Press, Princeton, N. J. , 1970.

[12]

T. N. Rozhkovskaya, Unilateral problems for elliptic systems with gradient constraints, in Partial differential equations, Part 1, 2 (Warsaw, 1990), vol. 2 of Banach Center Publ., 27, Part 1, Polish Acad. Sci., Warsaw, (1992), 425-445.

[13]

G. Treu and M. Vornicescu, On the equivalence of two variational problems, Calc. Var. Partial Differential Equations, 11 (2000), 307-319. doi: 10.1007/s005260000040.

[14]

M. Wiegner, The $C^{1, 1}$-character of solutions of second order elliptic equations with gradient constraint, Comm. Partial Differential Equations, 6 (1981), 361-371. doi: 10.1080/03605308108820181.

show all references

References:
[1]

H. Brezis and M. Sibony, Équivalence de deux inéquations variationnelles et applications, Arch. Rational Mech. Anal., 41 (1971), 254-265. doi: 10.1007/BF00250529.

[2]

H. Brezis and G. Stampacchia, Sur la régularité de la solution d'inéquations elliptiques, Bull. Soc. Math. France, 96 (1968), 153-180.

[3]

L. A. Caffarelli and N. M. Riviére, The Lipschitz character of the stress tensor, when twisting an elastic plastic bar, Arch. Rational Mech. Anal., 69 (1979), 31-36. doi: 10.1007/BF00248408.

[4]

L. C. Evans, A second-order elliptic equation with gradient constraint, Comm. Partial Differential Equations, 4 (1979), 555-572. doi: 10.1080/03605307908820103.

[5]

A. Friedman, Variational Principles And Free-Boundary Problems, Pure and Applied Mathematics, John Wiley & Sons, Inc. , New York, 1982, A Wiley-Interscience Publication.

[6]

C. Gerhardt, Regularity of solutions of nonlinear variational inequalities with a gradient bound as constraint, Arch. Rational Mech. Anal., 58 (1975), 309-315. doi: 10.1007/BF00250293.

[7]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations Of Second Order, Classics in Mathematics, Springer-Verlag, Berlin, 2001.

[8]

H. Ishii and S. Koike, Boundary regularity and uniqueness for an elliptic equation with gradient constraint, Comm. Partial Differential Equations, 8 (1983), 317-346. doi: 10.1080/03605308308820271.

[9]

R. Jensen, Regularity for elastoplastic type variational inequalities, Indiana Univ. Math. J., 32 (1983), 407-423. doi: 10.1512/iumj.1983.32.32030.

[10]

C. Mariconda and G. Treu, Gradient maximum principle for minima, J. Optim. Theory Appl., 112 (2002), 167-186. doi: 10.1023/A:1013052830852.

[11]

R. T. Rockafellar, Convex Analysis, Princeton Mathematical Series, No. 28, Princeton University Press, Princeton, N. J. , 1970.

[12]

T. N. Rozhkovskaya, Unilateral problems for elliptic systems with gradient constraints, in Partial differential equations, Part 1, 2 (Warsaw, 1990), vol. 2 of Banach Center Publ., 27, Part 1, Polish Acad. Sci., Warsaw, (1992), 425-445.

[13]

G. Treu and M. Vornicescu, On the equivalence of two variational problems, Calc. Var. Partial Differential Equations, 11 (2000), 307-319. doi: 10.1007/s005260000040.

[14]

M. Wiegner, The $C^{1, 1}$-character of solutions of second order elliptic equations with gradient constraint, Comm. Partial Differential Equations, 6 (1981), 361-371. doi: 10.1080/03605308108820181.

[1]

Xing Wang, Nan-Jing Huang. Stability analysis for set-valued vector mixed variational inequalities in real reflexive Banach spaces. Journal of Industrial & Management Optimization, 2013, 9 (1) : 57-74. doi: 10.3934/jimo.2013.9.57

[2]

G. Mastroeni, L. Pellegrini. On the image space analysis for vector variational inequalities. Journal of Industrial & Management Optimization, 2005, 1 (1) : 123-132. doi: 10.3934/jimo.2005.1.123

[3]

J. Gwinner. On differential variational inequalities and projected dynamical systems - equivalence and a stability result. Conference Publications, 2007, 2007 (Special) : 467-476. doi: 10.3934/proc.2007.2007.467

[4]

Matteo Focardi. Vector-valued obstacle problems for non-local energies. Discrete & Continuous Dynamical Systems - B, 2012, 17 (2) : 487-507. doi: 10.3934/dcdsb.2012.17.487

[5]

Hongxia Yin. An iterative method for general variational inequalities. Journal of Industrial & Management Optimization, 2005, 1 (2) : 201-209. doi: 10.3934/jimo.2005.1.201

[6]

Jiawei Chen, Zhongping Wan, Liuyang Yuan. Existence of solutions and $\alpha$-well-posedness for a system of constrained set-valued variational inequalities. Numerical Algebra, Control & Optimization, 2013, 3 (3) : 567-581. doi: 10.3934/naco.2013.3.567

[7]

Shige Peng, Mingyu Xu. Constrained BSDEs, viscosity solutions of variational inequalities and their applications. Mathematical Control & Related Fields, 2013, 3 (2) : 233-244. doi: 10.3934/mcrf.2013.3.233

[8]

Michel Chipot, Karen Yeressian. On the asymptotic behavior of variational inequalities set in cylinders. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11&12) : 4875-4890. doi: 10.3934/dcds.2013.33.4875

[9]

Qingzhi Yang. The revisit of a projection algorithm with variable steps for variational inequalities. Journal of Industrial & Management Optimization, 2005, 1 (2) : 211-217. doi: 10.3934/jimo.2005.1.211

[10]

P. Smoczynski, Mohamed Aly Tawhid. Two numerical schemes for general variational inequalities. Journal of Industrial & Management Optimization, 2008, 4 (2) : 393-406. doi: 10.3934/jimo.2008.4.393

[11]

Lori Badea. Multigrid methods for some quasi-variational inequalities. Discrete & Continuous Dynamical Systems - S, 2013, 6 (6) : 1457-1471. doi: 10.3934/dcdss.2013.6.1457

[12]

Yusuke Murase, Risei Kano, Nobuyuki Kenmochi. Elliptic Quasi-variational inequalities and applications. Conference Publications, 2009, 2009 (Special) : 583-591. doi: 10.3934/proc.2009.2009.583

[13]

G. Idone, A. Maugeri. Variational inequalities and a transport planning for an elastic and continuum model. Journal of Industrial & Management Optimization, 2005, 1 (1) : 81-86. doi: 10.3934/jimo.2005.1.81

[14]

Barbara Panicucci, Massimo Pappalardo, Mauro Passacantando. On finite-dimensional generalized variational inequalities. Journal of Industrial & Management Optimization, 2006, 2 (1) : 43-53. doi: 10.3934/jimo.2006.2.43

[15]

Dimitri Mugnai. Almost uniqueness result for reversed variational inequalities. Conference Publications, 2007, 2007 (Special) : 751-757. doi: 10.3934/proc.2007.2007.751

[16]

Takeshi Fukao, Nobuyuki Kenmochi. Abstract theory of variational inequalities and Lagrange multipliers. Conference Publications, 2013, 2013 (special) : 237-246. doi: 10.3934/proc.2013.2013.237

[17]

Yurii Nesterov, Laura Scrimali. Solving strongly monotone variational and quasi-variational inequalities. Discrete & Continuous Dynamical Systems - A, 2011, 31 (4) : 1383-1396. doi: 10.3934/dcds.2011.31.1383

[18]

Gang Qian, Deren Han, Lingling Xu, Hai Yang. Solving nonadditive traffic assignment problems: A self-adaptive projection-auxiliary problem method for variational inequalities. Journal of Industrial & Management Optimization, 2013, 9 (1) : 255-274. doi: 10.3934/jimo.2013.9.255

[19]

Zhili Ge, Gang Qian, Deren Han. Global convergence of an inexact operator splitting method for monotone variational inequalities. Journal of Industrial & Management Optimization, 2011, 7 (4) : 1013-1026. doi: 10.3934/jimo.2011.7.1013

[20]

Lori Badea, Marius Cocou. Approximation results and subspace correction algorithms for implicit variational inequalities. Discrete & Continuous Dynamical Systems - S, 2013, 6 (6) : 1507-1524. doi: 10.3934/dcdss.2013.6.1507

2017 Impact Factor: 0.884

Metrics

  • PDF downloads (16)
  • HTML views (111)
  • Cited by (0)

Other articles
by authors

[Back to Top]