
Previous Article
On the nonlinear convectiondiffusionreaction problem in a thin domain with a weak boundary absorption
 CPAA Home
 This Issue

Next Article
Positive solutions for KirchhoffSchrödingerPoisson systems with general nonlinearity
Global existence for a coupled wave system related to the Strauss conjecture
1.  Department of Mathematics, University of North Carolina Chapel Hill, Chapel Hill, NC, 275993250, USA 
2.  UCLA Mathematics Department, Box 951555, Los Angeles, CA, 900951555, USA 
A coupled system of semilinear wave equations is considered, and a small data global existence result related to the Strauss conjecture is proved. Previous results have shown that one of the powers may be reduced below the critical power for the Strauss conjecture provided the other power sufficiently exceeds such. The stability of such results under asymptotically flat perturbations of the spacetime where an integrated local energy decay estimate is available is established.
References:
[1] 
R. Agemi, Y. Kurokawa and H. Takamura, Critical curve for pq systems of nonlinear wave equations in three space dimensions, J. Differential Equations 167 (2000), 87133, 
[2] 
S. Alinhac, On the MorawetzKeelSmithSogge inequality for the wave equation on a curved background, Publ. Res. Inst. Math. Sci., 42 (2006), 705720. 
[3] 
L. Andersson and P. Blue, Hidden symmetries and decay for the wave equation on the Kerr spacetime, Ann. of Math. (2) 182 (2015), 787853, 
[4] 
P. Blue and A. Soffer, Errata for "Global existence and scattering for the nonlinear Schrödinger equation on Schwarzschild manifolds", "Semilinear wave equations on the Schwarzschild manifold Ⅰ: Local Decay Estimates", and "The wave equation on the Schwarzschild metric Ⅱ: Local decay for the spin 2 Regge Wheeler equation", Preprint. ArXiv: grqc/0608073. 
[5] 
P. Blue, A. Soffer, Semilinear wave equations on the Schwarzschild manifold. Ⅰ. Local decay estimates, Adv. Differential Equations, 8 (2003), 595614. 
[6] 
J. F. Bony and D. Häfner, The semilinear wave equation on asymptotically Euclidean manifolds, Comm. Partial Differential Equations 35 (2010), 2367, 
[7] 
R. Booth, H. Christianson, J. Metcalfe and J. Perry, Localized energy for wave equations with degenerate trapping, In preparation. 
[8] 
N. Burq, Global Strichartz estimates for nontrapping geometries: about an article by H. F. Smith and C. D. Sogge: "Global Strichartz estimates for nontrapping perturbations of the Laplacian" [Comm. Partial Differential Equation 25 (2000), no. 1112 21712183; MR1789924 (2001j: 35180)], Comm. Partial Differential Equations, 28 (2003), 16751683, 
[9] 
M. Dafermos and I. Rodnianski, Decay for solutions of the wave equation on Kerr exterior spacetimes ⅠⅡ: The cases $a\ll M$ or axisymmetry, Preprint. ArXiv: 1010.5132. 
[10] 
M. Dafermos and I. Rodnianski, A note on energy currents and decay for the wave equation on a Schwarzschild background, Preprint. ArXiv: 0710.0171. 
[11] 
M. Dafermos and I. Rodnianski, The redshift effect and radiation decay on black hole spacetimes, Comm. Pure Appl. Math. 62 (2009), 859919, 
[12] 
M. Dafermos and I. Rodnianski, A proof of the uniform boundedness of solutions to the wave equation on slowly rotating Kerr backgrounds, Invent. Math. 185 (2011), 467559, 
[13] 
M. Dafermos, I. Rodnianski and Y. ShlapentokhRothman, Decay for solutions of the wave equation on Kerr exterior spacetimes Ⅲ: The full subextremal case a < M, Ann. of Math. (2) 183 (2016), 787913, 
[14] 
D. Del Santo, Global existence and blowup for a hyperbolic system in three space dimensions, Rend. Istit. Mat. Univ. Trieste, 29 (1997), 115140 (1998). 
[15] 
D. Del Santo, È. Mitidieri, Blowup of solutions of a hyperbolic system: the critical case, Differ. Uravn., 34 (1998), 11551161,1293. 
[16] 
D. Del Santo, V. Georgiev and E. Mitidieri, Global existence of the solutions and formation of singularities for a class of hyperbolic systems, in Geometrical optics and related topics (Cortona, 1996), vol. 32 of Progr. Nonlinear Differential Equations Appl., Birkhäuser Boston, Boston, MA, 1997,117140. 
[17] 
K. Deng, Nonexistence of global solutions of a nonlinear hyperbolic system, Trans. Amer. Math. Soc. 349 (1997), 16851696, 
[18] 
Y. Du, J. Metcalfe, C. D. Sogge and Y. Zhou, Concerning the Strauss conjecture and almost global existence for nonlinear Dirichletwave equations in 4dimensions, Comm. Partial Differential Equations 33 (2008), 14871506, 
[19] 
D. Fang and C. Wang, Weighted Strichartz estimates with angular regularity and their applications, Forum Math. 23 (2011), 181205, 
[20] 
V. Georgiev, H. Lindblad and C. D. Sogge, Weighted Strichartz estimates and global existence for semilinear wave equations, Amer. J. Math. 119 (1997), 12911319, 
[21] 
V. Georgiev, H. Takamura and Z. Yi, The lifespan of solutions to nonlinear systems of a highdimensional wave equation, Nonlinear Anal. 64 (2006), 22152250, 
[22] 
K. Hidano, J. Metcalfe, H. F. Smith, C. D. Sogge and Y. Zhou, On abstract Strichartz estimates and the Strauss conjecture for nontrapping obstacles, Trans. Amer. Math. Soc. 362 (2010), 27892809, 
[23] 
F. John, Blowup of solutions of nonlinear wave equations in three space dimensions, Manuscripta Math. 28 (1979), 235268, 
[24] 
S. Klainerman, The null condition and global existence to nonlinear wave equations, in Nonlinear systems of partial differential equations in applied mathematics, Part 1 (Santa Fe, N. M., 1984), vol. 23 of Lectures in Appl. Math., Amer. Math. Soc., Providence, RI, 1986,293326. 
[25] 
H. Kubo and M. Ohta, Critical blowup for systems of semilinear wave equations in low space dimensions, J. Math. Anal. Appl. 240 (1999), 340360, 
[26] 
H. Kubo and M. Ohta, On the global behavior of classical solutions to coupled systems of semilinear wave equations, in New trends in the theory of hyperbolic equations vol. 159 of Oper. Theory Adv. Appl., Birkhäuser, Basel, 2005,113211, 
[27] 
H. Lindblad, J. Metcalfe, C. D. Sogge, M. Tohaneanu and C. Wang, The Strauss conjecture on Kerr black hole backgrounds, Math. Ann. 359 (2014), 637661, 
[28] 
J. Marzuola, J. Metcalfe, D. Tataru and M. Tohaneanu, Strichartz estimates on Schwarzschild black hole backgrounds, Comm. Math. Phys. 293 (2010), 3783, 
[29] 
J. Metcalfe and C. D. Sogge, Longtime existence of quasilinear wave equations exterior to starshaped obstacles via energy methods, SIAM J. Math. Anal. 38 (2006), 188209, 
[30] 
J. Metcalfe and C. D. Sogge, Global existence of nullform wave equations in exterior domains, Math. Z. 256 (2007), 521549, 
[31] 
J. Metcalfe, J. Sterbenz and D. Tataru, Local energy decay for scalar fields on time dependent nontrapping backgrounds, Preprint. ArXiv: 1703.08064. 
[32] 
J. Metcalfe and D. Tataru, Decay estimates for variable coefficient wave equations in exterior domains, in Advances in Phase Space Analysis of Partial Differential Equations vol. 78 of Progr. Nonlinear Differential Equations Appl., Birkhäuser Boston, Inc., Boston, MA, 2009,201216, 
[33] 
J. Metcalfe and D. Tataru, Global parametrices and dispersive estimates for variable coefficient wave equations, Math. Ann. 353 (2012), 11831237, 
[34] 
J. Metcalfe, D. Tataru, M. Tohaneanu, Price's law on nonstationary spacetimes, Adv. Math., 230 (2012), 9951028. 
[35] 
J. Metcalfe and C. Wang, The Strauss conjecture on asymptotically flat spacetimes, Comm. Pure Appl. Anal., to appear. ArXiv: 1605.02157. 
[36] 
C. S. Morawetz, Time decay for the nonlinear KleinGordon equations, Proc. Roy. Soc. Ser. A, 306 (1968), 291296. 
[37] 
J. V. Ralston, Solutions of the wave equation with localized energy, Comm. Pure Appl. Math., 22 (1969), 807823. 
[38] 
J. Sbierski, Characterisation of the energy of Gaussian beams on Lorentzian manifolds: with applications to black hole spacetimes, Anal. PDE, 8 (2015), 13791420. 
[39] 
J. Schaeffer, The equation $u_{tt}Δ u = \vert u\vert ^p $ for the critical value of $p$, Proc. Roy. Soc. Edinburgh Sect. A, 101 (1985), 3144. 
[40] 
T. C. Sideris, Nonexistence of global solutions to semilinear wave equations in high dimensions, J. Differential Equations, 52 (1984), 378406. 
[41] 
H. F. Smith, C. D. Sogge, C. Wang, Strichartz estimates for Dirichletwave equations in two dimensions with applications, Trans. Amer. Math. Soc., 364 (2012), 33293347. 
[42] 
C. D. Sogge, C. Wang, Concerning the wave equation on asymptotically Euclidean manifolds, J. Anal. Math., 112 (2010), 132. 
[43] 
J. Sterbenz, Angular regularity and Strichartz estimates for the wave equation, Int. Math. Res. Not. , 187231. With an appendix by Igor Rodnianski. 
[44] 
W. A. Strauss, Nonlinear scattering theory at low energy, J. Funct. Anal., 41 (1981), 110133. 
[45] 
D. Tataru, Strichartz estimates in the hyperbolic space and global existence for the semilinear wave equation, Trans. Amer. Math. Soc., 353 (2001), 795807 (electronic). 
[46] 
D. Tataru, Local decay of waves on asymptotically flat stationary spacetimes, Amer. J. Math., 135 (2013), 361401. 
[47] 
D. Tataru, M. Tohaneanu, A local energy estimate on Kerr black hole backgrounds, Int. Math. Res. Not. IMRN, (), 248292. 
[48] 
C. Wang, Long time existence for semilinear wave equations on asymptotically flat spacetimes, Comm. Partial Differential Equations, 42 (2017), 11501174. 
[49] 
C. Wang, X. Yu, Concerning the Strauss conjecture on asymptotically Euclidean manifolds, J. Math. Anal. Appl., 379 (2011), 549566. 
[50] 
C. Wang and X. Yu, Recent works on the Strauss conjecture, in Recent advances in harmonic analysis and partial differential equations, vol. 581 of Contemp. Math., Amer. Math. Soc., Providence, RI, 2012,235256. 
[51] 
B. T. Yordanov, Q. S. Zhang, Finite time blow up for critical wave equations in high dimensions, J. Funct. Anal., 231 (2006), 361374. 
[52] 
X. Yu, Generalized Strichartz estimates on perturbed wave equation and applications on Strauss conjecture, Differential Integral Equations, 24 (2011), 443468. 
show all references
References:
[1] 
R. Agemi, Y. Kurokawa and H. Takamura, Critical curve for pq systems of nonlinear wave equations in three space dimensions, J. Differential Equations 167 (2000), 87133, 
[2] 
S. Alinhac, On the MorawetzKeelSmithSogge inequality for the wave equation on a curved background, Publ. Res. Inst. Math. Sci., 42 (2006), 705720. 
[3] 
L. Andersson and P. Blue, Hidden symmetries and decay for the wave equation on the Kerr spacetime, Ann. of Math. (2) 182 (2015), 787853, 
[4] 
P. Blue and A. Soffer, Errata for "Global existence and scattering for the nonlinear Schrödinger equation on Schwarzschild manifolds", "Semilinear wave equations on the Schwarzschild manifold Ⅰ: Local Decay Estimates", and "The wave equation on the Schwarzschild metric Ⅱ: Local decay for the spin 2 Regge Wheeler equation", Preprint. ArXiv: grqc/0608073. 
[5] 
P. Blue, A. Soffer, Semilinear wave equations on the Schwarzschild manifold. Ⅰ. Local decay estimates, Adv. Differential Equations, 8 (2003), 595614. 
[6] 
J. F. Bony and D. Häfner, The semilinear wave equation on asymptotically Euclidean manifolds, Comm. Partial Differential Equations 35 (2010), 2367, 
[7] 
R. Booth, H. Christianson, J. Metcalfe and J. Perry, Localized energy for wave equations with degenerate trapping, In preparation. 
[8] 
N. Burq, Global Strichartz estimates for nontrapping geometries: about an article by H. F. Smith and C. D. Sogge: "Global Strichartz estimates for nontrapping perturbations of the Laplacian" [Comm. Partial Differential Equation 25 (2000), no. 1112 21712183; MR1789924 (2001j: 35180)], Comm. Partial Differential Equations, 28 (2003), 16751683, 
[9] 
M. Dafermos and I. Rodnianski, Decay for solutions of the wave equation on Kerr exterior spacetimes ⅠⅡ: The cases $a\ll M$ or axisymmetry, Preprint. ArXiv: 1010.5132. 
[10] 
M. Dafermos and I. Rodnianski, A note on energy currents and decay for the wave equation on a Schwarzschild background, Preprint. ArXiv: 0710.0171. 
[11] 
M. Dafermos and I. Rodnianski, The redshift effect and radiation decay on black hole spacetimes, Comm. Pure Appl. Math. 62 (2009), 859919, 
[12] 
M. Dafermos and I. Rodnianski, A proof of the uniform boundedness of solutions to the wave equation on slowly rotating Kerr backgrounds, Invent. Math. 185 (2011), 467559, 
[13] 
M. Dafermos, I. Rodnianski and Y. ShlapentokhRothman, Decay for solutions of the wave equation on Kerr exterior spacetimes Ⅲ: The full subextremal case a < M, Ann. of Math. (2) 183 (2016), 787913, 
[14] 
D. Del Santo, Global existence and blowup for a hyperbolic system in three space dimensions, Rend. Istit. Mat. Univ. Trieste, 29 (1997), 115140 (1998). 
[15] 
D. Del Santo, È. Mitidieri, Blowup of solutions of a hyperbolic system: the critical case, Differ. Uravn., 34 (1998), 11551161,1293. 
[16] 
D. Del Santo, V. Georgiev and E. Mitidieri, Global existence of the solutions and formation of singularities for a class of hyperbolic systems, in Geometrical optics and related topics (Cortona, 1996), vol. 32 of Progr. Nonlinear Differential Equations Appl., Birkhäuser Boston, Boston, MA, 1997,117140. 
[17] 
K. Deng, Nonexistence of global solutions of a nonlinear hyperbolic system, Trans. Amer. Math. Soc. 349 (1997), 16851696, 
[18] 
Y. Du, J. Metcalfe, C. D. Sogge and Y. Zhou, Concerning the Strauss conjecture and almost global existence for nonlinear Dirichletwave equations in 4dimensions, Comm. Partial Differential Equations 33 (2008), 14871506, 
[19] 
D. Fang and C. Wang, Weighted Strichartz estimates with angular regularity and their applications, Forum Math. 23 (2011), 181205, 
[20] 
V. Georgiev, H. Lindblad and C. D. Sogge, Weighted Strichartz estimates and global existence for semilinear wave equations, Amer. J. Math. 119 (1997), 12911319, 
[21] 
V. Georgiev, H. Takamura and Z. Yi, The lifespan of solutions to nonlinear systems of a highdimensional wave equation, Nonlinear Anal. 64 (2006), 22152250, 
[22] 
K. Hidano, J. Metcalfe, H. F. Smith, C. D. Sogge and Y. Zhou, On abstract Strichartz estimates and the Strauss conjecture for nontrapping obstacles, Trans. Amer. Math. Soc. 362 (2010), 27892809, 
[23] 
F. John, Blowup of solutions of nonlinear wave equations in three space dimensions, Manuscripta Math. 28 (1979), 235268, 
[24] 
S. Klainerman, The null condition and global existence to nonlinear wave equations, in Nonlinear systems of partial differential equations in applied mathematics, Part 1 (Santa Fe, N. M., 1984), vol. 23 of Lectures in Appl. Math., Amer. Math. Soc., Providence, RI, 1986,293326. 
[25] 
H. Kubo and M. Ohta, Critical blowup for systems of semilinear wave equations in low space dimensions, J. Math. Anal. Appl. 240 (1999), 340360, 
[26] 
H. Kubo and M. Ohta, On the global behavior of classical solutions to coupled systems of semilinear wave equations, in New trends in the theory of hyperbolic equations vol. 159 of Oper. Theory Adv. Appl., Birkhäuser, Basel, 2005,113211, 
[27] 
H. Lindblad, J. Metcalfe, C. D. Sogge, M. Tohaneanu and C. Wang, The Strauss conjecture on Kerr black hole backgrounds, Math. Ann. 359 (2014), 637661, 
[28] 
J. Marzuola, J. Metcalfe, D. Tataru and M. Tohaneanu, Strichartz estimates on Schwarzschild black hole backgrounds, Comm. Math. Phys. 293 (2010), 3783, 
[29] 
J. Metcalfe and C. D. Sogge, Longtime existence of quasilinear wave equations exterior to starshaped obstacles via energy methods, SIAM J. Math. Anal. 38 (2006), 188209, 
[30] 
J. Metcalfe and C. D. Sogge, Global existence of nullform wave equations in exterior domains, Math. Z. 256 (2007), 521549, 
[31] 
J. Metcalfe, J. Sterbenz and D. Tataru, Local energy decay for scalar fields on time dependent nontrapping backgrounds, Preprint. ArXiv: 1703.08064. 
[32] 
J. Metcalfe and D. Tataru, Decay estimates for variable coefficient wave equations in exterior domains, in Advances in Phase Space Analysis of Partial Differential Equations vol. 78 of Progr. Nonlinear Differential Equations Appl., Birkhäuser Boston, Inc., Boston, MA, 2009,201216, 
[33] 
J. Metcalfe and D. Tataru, Global parametrices and dispersive estimates for variable coefficient wave equations, Math. Ann. 353 (2012), 11831237, 
[34] 
J. Metcalfe, D. Tataru, M. Tohaneanu, Price's law on nonstationary spacetimes, Adv. Math., 230 (2012), 9951028. 
[35] 
J. Metcalfe and C. Wang, The Strauss conjecture on asymptotically flat spacetimes, Comm. Pure Appl. Anal., to appear. ArXiv: 1605.02157. 
[36] 
C. S. Morawetz, Time decay for the nonlinear KleinGordon equations, Proc. Roy. Soc. Ser. A, 306 (1968), 291296. 
[37] 
J. V. Ralston, Solutions of the wave equation with localized energy, Comm. Pure Appl. Math., 22 (1969), 807823. 
[38] 
J. Sbierski, Characterisation of the energy of Gaussian beams on Lorentzian manifolds: with applications to black hole spacetimes, Anal. PDE, 8 (2015), 13791420. 
[39] 
J. Schaeffer, The equation $u_{tt}Δ u = \vert u\vert ^p $ for the critical value of $p$, Proc. Roy. Soc. Edinburgh Sect. A, 101 (1985), 3144. 
[40] 
T. C. Sideris, Nonexistence of global solutions to semilinear wave equations in high dimensions, J. Differential Equations, 52 (1984), 378406. 
[41] 
H. F. Smith, C. D. Sogge, C. Wang, Strichartz estimates for Dirichletwave equations in two dimensions with applications, Trans. Amer. Math. Soc., 364 (2012), 33293347. 
[42] 
C. D. Sogge, C. Wang, Concerning the wave equation on asymptotically Euclidean manifolds, J. Anal. Math., 112 (2010), 132. 
[43] 
J. Sterbenz, Angular regularity and Strichartz estimates for the wave equation, Int. Math. Res. Not. , 187231. With an appendix by Igor Rodnianski. 
[44] 
W. A. Strauss, Nonlinear scattering theory at low energy, J. Funct. Anal., 41 (1981), 110133. 
[45] 
D. Tataru, Strichartz estimates in the hyperbolic space and global existence for the semilinear wave equation, Trans. Amer. Math. Soc., 353 (2001), 795807 (electronic). 
[46] 
D. Tataru, Local decay of waves on asymptotically flat stationary spacetimes, Amer. J. Math., 135 (2013), 361401. 
[47] 
D. Tataru, M. Tohaneanu, A local energy estimate on Kerr black hole backgrounds, Int. Math. Res. Not. IMRN, (), 248292. 
[48] 
C. Wang, Long time existence for semilinear wave equations on asymptotically flat spacetimes, Comm. Partial Differential Equations, 42 (2017), 11501174. 
[49] 
C. Wang, X. Yu, Concerning the Strauss conjecture on asymptotically Euclidean manifolds, J. Math. Anal. Appl., 379 (2011), 549566. 
[50] 
C. Wang and X. Yu, Recent works on the Strauss conjecture, in Recent advances in harmonic analysis and partial differential equations, vol. 581 of Contemp. Math., Amer. Math. Soc., Providence, RI, 2012,235256. 
[51] 
B. T. Yordanov, Q. S. Zhang, Finite time blow up for critical wave equations in high dimensions, J. Funct. Anal., 231 (2006), 361374. 
[52] 
X. Yu, Generalized Strichartz estimates on perturbed wave equation and applications on Strauss conjecture, Differential Integral Equations, 24 (2011), 443468. 
[1] 
JinCheng Jiang, Chengbo Wang, Xin Yu. Generalized and weighted Strichartz estimates. Communications on Pure & Applied Analysis, 2012, 11 (5) : 17231752. doi: 10.3934/cpaa.2012.11.1723 
[2] 
Youngwoo Koh, Ihyeok Seo. Strichartz estimates for Schrödinger equations in weighted $L^2$ spaces and their applications. Discrete & Continuous Dynamical Systems  A, 2017, 37 (9) : 48774906. doi: 10.3934/dcds.2017210 
[3] 
Norisuke Ioku. Some spacetime integrability estimates of the solution for heat equations in two dimensions. Conference Publications, 2011, 2011 (Special) : 707716. doi: 10.3934/proc.2011.2011.707 
[4] 
Claudia Anedda, Giovanni Porru. Boundary estimates for solutions of weighted semilinear elliptic equations. Discrete & Continuous Dynamical Systems  A, 2012, 32 (11) : 38013817. doi: 10.3934/dcds.2012.32.3801 
[5] 
Robert Schippa. Generalized inhomogeneous Strichartz estimates. Discrete & Continuous Dynamical Systems  A, 2017, 37 (6) : 33873410. doi: 10.3934/dcds.2017143 
[6] 
MengRong Li. Estimates for the lifespan of the solutions for some semilinear wave equations. Communications on Pure & Applied Analysis, 2008, 7 (2) : 417432. doi: 10.3934/cpaa.2008.7.417 
[7] 
Yanzhao Cao, Li Yin. Spectral Galerkin method for stochastic wave equations driven by spacetime white noise. Communications on Pure & Applied Analysis, 2007, 6 (3) : 607617. doi: 10.3934/cpaa.2007.6.607 
[8] 
Henri Schurz. Analysis and discretization of semilinear stochastic wave equations with cubic nonlinearity and additive spacetime noise. Discrete & Continuous Dynamical Systems  S, 2008, 1 (2) : 353363. doi: 10.3934/dcdss.2008.1.353 
[9] 
ChuHee Cho, Youngwoo Koh, Ihyeok Seo. On inhomogeneous Strichartz estimates for fractional Schrödinger equations and their applications. Discrete & Continuous Dynamical Systems  A, 2016, 36 (4) : 19051926. doi: 10.3934/dcds.2016.36.1905 
[10] 
Gong Chen. Strichartz estimates for charge transfer models. Discrete & Continuous Dynamical Systems  A, 2017, 37 (3) : 12011226. doi: 10.3934/dcds.2017050 
[11] 
Robert Schippa. Sharp Strichartz estimates in spherical coordinates. Communications on Pure & Applied Analysis, 2017, 16 (6) : 20472051. doi: 10.3934/cpaa.2017100 
[12] 
Louis Tebou. Energy decay estimates for some weakly coupled EulerBernoulli and wave equations with indirect damping mechanisms. Mathematical Control & Related Fields, 2012, 2 (1) : 4560. doi: 10.3934/mcrf.2012.2.45 
[13] 
Xavier Cabré, Manel Sanchón, Joel Spruck. A priori estimates for semistable solutions of semilinear elliptic equations. Discrete & Continuous Dynamical Systems  A, 2016, 36 (2) : 601609. doi: 10.3934/dcds.2016.36.601 
[14] 
Dmitry Turaev, Sergey Zelik. Analytical proof of spacetime chaos in GinzburgLandau equations. Discrete & Continuous Dynamical Systems  A, 2010, 28 (4) : 17131751. doi: 10.3934/dcds.2010.28.1713 
[15] 
Haruya Mizutani. Strichartz estimates for Schrödinger equations with variable coefficients and unbounded potentials II. Superquadratic potentials. Communications on Pure & Applied Analysis, 2014, 13 (6) : 21772210. doi: 10.3934/cpaa.2014.13.2177 
[16] 
Junjie Zhang, Shenzhou Zheng. Weighted lorentz estimates for nondivergence linear elliptic equations with partially BMO coefficients. Communications on Pure & Applied Analysis, 2017, 16 (3) : 899914. doi: 10.3934/cpaa.2017043 
[17] 
Ping Li, Pablo Raúl Stinga, José L. Torrea. On weighted mixednorm Sobolev estimates for some basic parabolic equations. Communications on Pure & Applied Analysis, 2017, 16 (3) : 855882. doi: 10.3934/cpaa.2017041 
[18] 
Marco Cappiello, Fabio Nicola. Sharp decay estimates and smoothness for solutions to nonlocal semilinear equations. Discrete & Continuous Dynamical Systems  A, 2016, 36 (4) : 18691880. doi: 10.3934/dcds.2016.36.1869 
[19] 
SunYung Alice Chang, XiNan Ma, Paul Yang. Principal curvature estimates for the convex level sets of semilinear elliptic equations. Discrete & Continuous Dynamical Systems  A, 2010, 28 (3) : 11511164. doi: 10.3934/dcds.2010.28.1151 
[20] 
Hongjie Dong, Doyoon Kim. Schauder estimates for a class of nonlocal elliptic equations. Discrete & Continuous Dynamical Systems  A, 2013, 33 (6) : 23192347. doi: 10.3934/dcds.2013.33.2319 
2016 Impact Factor: 0.801
Tools
Metrics
Other articles
by authors
[Back to Top]