• Previous Article
    The approximate solution for Benjamin-Bona-Mahony equation under slowly varying medium
  • CPAA Home
  • This Issue
  • Next Article
    Regularity of extremal solutions of semilinaer fourth-order elliptic problems with general nonlinearities
May 2018, 17(3): 849-885. doi: 10.3934/cpaa.2018043

Existence results for the fractional Q-curvature problem on three dimensional CR sphere

1. 

School of Mathematics and Information Science, Guangzhou University, Guangzhou 510006, China

2. 

School of Mathematical Sciences, Nankai University, Tianjin 300071, China

* Corresponding author

Received  July 2017 Revised  July 2017 Published  January 2018

Fund Project: The first author is supported by NSF of China (11471170)

In this paper the fractional Q-curvature problem on three dimensional CR sphere is considered. By using the critical points theory at infinity, an existence result is obtained.

Citation: Chungen Liu, Yafang Wang. Existence results for the fractional Q-curvature problem on three dimensional CR sphere. Communications on Pure & Applied Analysis, 2018, 17 (3) : 849-885. doi: 10.3934/cpaa.2018043
References:
[1]

R. A. Adams, Sobolev Spaces, Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London, 1975, Pure and Applied Mathematics, Vol. 65.

[2]

A. Ambrosetti and A. Malchiodi, Perturbation Methods and Semilinear Elliptic Problems on $R^n$, vol. 240 of Progress in Mathematics, Birkhäuser Verlag, Basel, 2006.

[3]

A. Bahri, Critical Points at Infinity in Some Variational Problems, vol. 182 of Pitman Research Notes in Mathematics Series, Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, 1989.

[4]

A. Bahri and H. Brezis, Non-linear elliptic equations on Riemannian manifolds with the Sobolev critical exponent, in Topics in Geometry, vol. 20 of Progr. Nonlinear Differential Equations Appl., Birkhäuser Boston, Boston, MA, 1996, 1-100

[5]

A. Bahri and J.-M. Coron, On a nonlinear elliptic equation involving the critical Sobolev exponent: the effect of the topology of the domain, Comm. Pure Appl. Math., 41 (1988), 253-294. doi: 10.1002/cpa.3160410302.

[6]

A. Bahri and J.-M. Coron, The scalar-curvature problem on the standard three-dimensional sphere, J. Funct. Anal., 95 (1991), 106-172. doi: 10.1016/0022-1236(91)90026-2.

[7]

A. Bahri and P. H. Rabinowitz, Periodic solutions of Hamiltonian systems of 3-body type, Ann. Inst. H. Poincaré Anal. Non Linéaire, 8 (1991), 561-649.

[8]

A. Bahri, An invariant for Yamabe-type flows with applications to scalar-curvature problems in high dimension, Duke Math. J., 81 (1996), 323-466. doi: 10.1215/S0012-7094-96-08116-8.

[9]

M. Ben AyedY. ChenH. Chtioui and M. Hammami, On the prescribed scalar curvature problem on 4-manifolds, Duke Math. J., 84 (1996), 633-677. doi: 10.1215/S0012-7094-96-08420-3.

[10]

G. Bianchi and H. Egnell, Local existence and uniqueness of positive solutions of the equation $Δ u+(1+ε\varphi(r))u^{(n+2)/(n-2)} = 0$, in $\textbf{R}^n$ and a related equation, in Nonlinear Diffusion Equations and Their Equilibrium States, 3 (Gregynog, 1989), vol. 7 of Progr, Nonlinear Differential Equations Appl., Birkhäuser Boston, Boston, MA, (1992), 111-128. doi: 10.1007/978-1-4612-0393-3_8.

[11]

T. Bieske, On ∞-harmonic functions on the Heisenberg group, Comm. Partial Differential Equations, 27 (2002), 727-761. doi: 10.1081/PDE-120002872.

[12]

T. P. BransonL. Fontana and C. Morpurgo, Moser-Trudinger and Beckner-Onofri's inequalities on the CR sphere, Ann. of Math. (2), 177 (2013), 1-52. doi: 10.4007/annals.2013.177.1.1.

[13]

H. Brezis and J.-M. Coron, Convergence of solutions of H-systems or how to blow bubbles, Arch. Rational Mech. Anal., 89 (1985), 21-56. doi: 10.1007/BF00281744.

[14]

L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations, 32 (2007), 1245-1260. doi: 10.1080/03605300600987306.

[15]

K. -c. Chang, Infinite-dimensional Morse Theory and Multiple Solution Problems, Progress in Nonlinear Differential Equations and their Applications, 6, Birkhäuser Boston Inc., Boston, MA, 1993.

[16]

S.-Y. A. Chang and P. C. Yang, Conformal deformation of metrics on $S^2$, J. Differential Geom., 27 (1988), 259-296.

[17]

S.-Y. A. Chang and P. C. Yang, A perturbation result in prescribing scalar curvature on $S^n$, Duke Math. J., 64 (1991), 27-69. doi: 10.1215/S0012-7094-91-06402-1.

[18]

S.-Y. A. Chang and M. d. M. González, Fractional Laplacian in conformal geometry, Adv. Math., 226 (2011), 1410-1432. doi: 10.1016/j.aim.2010.07.016.

[19]

S.-Y. A. Chang and P. C. Yang, Prescribing Gaussian curvature on $S^2$, Acta Math., 159 (1987), 215-259. doi: 10.1007/BF02392560.

[20]

G. Chen and Y. Zheng, Concentration phenomenon for fractional nonlinear schrödinger equations, Communications on Pure and Applied Analysis, 13 (2014), 2359-2376.

[21]

G. Chen and Y. Zheng, A perturbation result for the curvature problem on $S^n$, Nonlinear Analysis, 97 (2014), 4-14.

[22]

W. X. Chen, Scalar curvatures on $S^n$, Math. Ann., 283 (1989), 353-365. doi: 10.1007/BF01442733.

[23]

W. X. Chen and W. Y. Ding, Scalar curvatures on $S^2$, Trans. Amer. Math. Soc., 303 (1987), 365-382. doi: 10.2307/2000798.

[24]

H. ChtiouiK. El Mehdi and N. Gamara, The Webster scalar curvature problem on the three dimensional CR manifolds, Bull. Sci. Math., 131 (2007), 361-374. doi: 10.1016/j.bulsci.2006.05.003.

[25]

S. Dragomir and G. Tomassini, Differential Geometry and Analysis on CR Manifolds, vol. 246 of Progress in Mathematics, Birkhäuser Boston, Inc., Boston, MA, 2006.

[26]

J. F. Escobar and R. M. Schoen, Conformal metrics with prescribed scalar curvature, Invent. Math., 86 (1986), 243-254. doi: 10.1007/BF01389071.

[27]

G. B. Folland and E. M. Stein, Estimates for the $\bar \partial _{b}$ complex and analysis on the Heisenberg group, Comm. Pure Appl. Math., 27 (1974), 429-522.

[28]

R. L. FrankM. d. M. GonzálezD. D. Monticelli and J. Tan, An extension problem for the CR fractional Laplacian, Advances in Mathematics, 270 (2015), 97-137.

[29]

R. L. Frank and E. H. Lieb, Inversion positivity and the sharp Hardy-Littlewood-Sobolev inequality, Calc. Var. Partial Differential Equations, 39 (2010), 85-99. doi: 10.1007/s00526-009-0302-x.

[30]

R. L. Frank and E. H. Lieb, Sharp constants in several inequalities on the Heisenberg group, Ann. of Math. (2), 176 (2012), 349-381. doi: 10.4007/annals.2012.176.1.6.

[31]

N. Gamara, The CR Yamabe conjecture-the case $n = 1$, J. Eur. Math. Soc. (JEMS), 3 (2001), 105-137. doi: 10.1007/PL00011303.

[32]

N. Gamara, The prescribed scalar curvature on a 3-dimensional CR manifold, Adv. Nonlinear Stud., 2 (2002), 193-235.

[33]

N. Gamara and R. Yacoub, CR Yamabe conjecture-the conformally flat case, Pacific J. Math., 201 (2001), 121-175. doi: 10.2140/pjm.2001.201.121.

[34]

Z.-C. Han, Prescribing Gaussian curvature on $S^2$, Duke Math. J., 61 (1990), 679-703. doi: 10.1215/S0012-7094-90-06125-3.

[35]

E. Hebey, Changements de métriques conformes sur la sphére. Le probléme de Nirenberg, Bull. Sci. Math., 114 (1990), 215-242.

[36]

D. Jerison and J. M. Lee, The Yamabe problem on CR manifolds, J. Differential Geom., 25 (1987), 167-197.

[37]

D. Jerison and J. M. Lee, Extremals for the Sobolev inequality on the Heisenberg group and the CR Yamabe problem, J. Amer. Math. Soc., 1 (1988), 1-13. doi: 10.2307/1990964.

[38]

D. Jerison and J. M. Lee, Intrinsic CR normal coordinates and the CR Yamabe problem, J. Differential Geom., 29 (1989), 303-343.

[39]

J. M. Lee and T. H. Parker, The Yamabe problem, Bull. Amer. Math. Soc. (N.S.), 17 (1987), 37-91. doi: 10.1090/S0273-0979-1987-15514-5.

[40]

Y. Y. Li, Prescribing scalar curvature on $S^n$ and related problems. I, J. Differential Equations, 120 (1995), 319-410. doi: 10.1006/jdeq.1995.1115.

[41]

E. H. Lieb, Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities, Ann. of Math. (2), 118 (1983), 349-374. doi: 10.2307/2007032.

[42]

E. H. Lieb and M. Loss, Analysis, vol. 14 of Graduate Studies in Mathematics, 2nd edition, American Mathematical Society, Providence, RI, 2001.

[43]

A. Malchiodi and F. Uguzzoni, A perturbation result for the Webster scalar curvature problem on the CR sphere, J. Math. Pures Appl. (9), 81 (2002), 983-997. doi: 10.1016/S0021-7824(01)01249-1.

[44]

J. J. Manfredi and B. Stroffolini, A version of the Hopf-Lax formula in the Heisenberg group, Comm. Partial Differential Equations, 27 (2002), 1139-1159. doi: 10.1081/PDE-120004897.

[45]

J. Moser, On a nonlinear problem in differential geometry, 273-280.

[46]

E. Salem and N. Gamara, The Webster scalar curvature revisited: the case of the three dimensional CR sphere, Calc. Var. Partial Differential Equations, 42 (2011), 107-136. doi: 10.1007/s00526-010-0382-7.

show all references

References:
[1]

R. A. Adams, Sobolev Spaces, Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London, 1975, Pure and Applied Mathematics, Vol. 65.

[2]

A. Ambrosetti and A. Malchiodi, Perturbation Methods and Semilinear Elliptic Problems on $R^n$, vol. 240 of Progress in Mathematics, Birkhäuser Verlag, Basel, 2006.

[3]

A. Bahri, Critical Points at Infinity in Some Variational Problems, vol. 182 of Pitman Research Notes in Mathematics Series, Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, 1989.

[4]

A. Bahri and H. Brezis, Non-linear elliptic equations on Riemannian manifolds with the Sobolev critical exponent, in Topics in Geometry, vol. 20 of Progr. Nonlinear Differential Equations Appl., Birkhäuser Boston, Boston, MA, 1996, 1-100

[5]

A. Bahri and J.-M. Coron, On a nonlinear elliptic equation involving the critical Sobolev exponent: the effect of the topology of the domain, Comm. Pure Appl. Math., 41 (1988), 253-294. doi: 10.1002/cpa.3160410302.

[6]

A. Bahri and J.-M. Coron, The scalar-curvature problem on the standard three-dimensional sphere, J. Funct. Anal., 95 (1991), 106-172. doi: 10.1016/0022-1236(91)90026-2.

[7]

A. Bahri and P. H. Rabinowitz, Periodic solutions of Hamiltonian systems of 3-body type, Ann. Inst. H. Poincaré Anal. Non Linéaire, 8 (1991), 561-649.

[8]

A. Bahri, An invariant for Yamabe-type flows with applications to scalar-curvature problems in high dimension, Duke Math. J., 81 (1996), 323-466. doi: 10.1215/S0012-7094-96-08116-8.

[9]

M. Ben AyedY. ChenH. Chtioui and M. Hammami, On the prescribed scalar curvature problem on 4-manifolds, Duke Math. J., 84 (1996), 633-677. doi: 10.1215/S0012-7094-96-08420-3.

[10]

G. Bianchi and H. Egnell, Local existence and uniqueness of positive solutions of the equation $Δ u+(1+ε\varphi(r))u^{(n+2)/(n-2)} = 0$, in $\textbf{R}^n$ and a related equation, in Nonlinear Diffusion Equations and Their Equilibrium States, 3 (Gregynog, 1989), vol. 7 of Progr, Nonlinear Differential Equations Appl., Birkhäuser Boston, Boston, MA, (1992), 111-128. doi: 10.1007/978-1-4612-0393-3_8.

[11]

T. Bieske, On ∞-harmonic functions on the Heisenberg group, Comm. Partial Differential Equations, 27 (2002), 727-761. doi: 10.1081/PDE-120002872.

[12]

T. P. BransonL. Fontana and C. Morpurgo, Moser-Trudinger and Beckner-Onofri's inequalities on the CR sphere, Ann. of Math. (2), 177 (2013), 1-52. doi: 10.4007/annals.2013.177.1.1.

[13]

H. Brezis and J.-M. Coron, Convergence of solutions of H-systems or how to blow bubbles, Arch. Rational Mech. Anal., 89 (1985), 21-56. doi: 10.1007/BF00281744.

[14]

L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations, 32 (2007), 1245-1260. doi: 10.1080/03605300600987306.

[15]

K. -c. Chang, Infinite-dimensional Morse Theory and Multiple Solution Problems, Progress in Nonlinear Differential Equations and their Applications, 6, Birkhäuser Boston Inc., Boston, MA, 1993.

[16]

S.-Y. A. Chang and P. C. Yang, Conformal deformation of metrics on $S^2$, J. Differential Geom., 27 (1988), 259-296.

[17]

S.-Y. A. Chang and P. C. Yang, A perturbation result in prescribing scalar curvature on $S^n$, Duke Math. J., 64 (1991), 27-69. doi: 10.1215/S0012-7094-91-06402-1.

[18]

S.-Y. A. Chang and M. d. M. González, Fractional Laplacian in conformal geometry, Adv. Math., 226 (2011), 1410-1432. doi: 10.1016/j.aim.2010.07.016.

[19]

S.-Y. A. Chang and P. C. Yang, Prescribing Gaussian curvature on $S^2$, Acta Math., 159 (1987), 215-259. doi: 10.1007/BF02392560.

[20]

G. Chen and Y. Zheng, Concentration phenomenon for fractional nonlinear schrödinger equations, Communications on Pure and Applied Analysis, 13 (2014), 2359-2376.

[21]

G. Chen and Y. Zheng, A perturbation result for the curvature problem on $S^n$, Nonlinear Analysis, 97 (2014), 4-14.

[22]

W. X. Chen, Scalar curvatures on $S^n$, Math. Ann., 283 (1989), 353-365. doi: 10.1007/BF01442733.

[23]

W. X. Chen and W. Y. Ding, Scalar curvatures on $S^2$, Trans. Amer. Math. Soc., 303 (1987), 365-382. doi: 10.2307/2000798.

[24]

H. ChtiouiK. El Mehdi and N. Gamara, The Webster scalar curvature problem on the three dimensional CR manifolds, Bull. Sci. Math., 131 (2007), 361-374. doi: 10.1016/j.bulsci.2006.05.003.

[25]

S. Dragomir and G. Tomassini, Differential Geometry and Analysis on CR Manifolds, vol. 246 of Progress in Mathematics, Birkhäuser Boston, Inc., Boston, MA, 2006.

[26]

J. F. Escobar and R. M. Schoen, Conformal metrics with prescribed scalar curvature, Invent. Math., 86 (1986), 243-254. doi: 10.1007/BF01389071.

[27]

G. B. Folland and E. M. Stein, Estimates for the $\bar \partial _{b}$ complex and analysis on the Heisenberg group, Comm. Pure Appl. Math., 27 (1974), 429-522.

[28]

R. L. FrankM. d. M. GonzálezD. D. Monticelli and J. Tan, An extension problem for the CR fractional Laplacian, Advances in Mathematics, 270 (2015), 97-137.

[29]

R. L. Frank and E. H. Lieb, Inversion positivity and the sharp Hardy-Littlewood-Sobolev inequality, Calc. Var. Partial Differential Equations, 39 (2010), 85-99. doi: 10.1007/s00526-009-0302-x.

[30]

R. L. Frank and E. H. Lieb, Sharp constants in several inequalities on the Heisenberg group, Ann. of Math. (2), 176 (2012), 349-381. doi: 10.4007/annals.2012.176.1.6.

[31]

N. Gamara, The CR Yamabe conjecture-the case $n = 1$, J. Eur. Math. Soc. (JEMS), 3 (2001), 105-137. doi: 10.1007/PL00011303.

[32]

N. Gamara, The prescribed scalar curvature on a 3-dimensional CR manifold, Adv. Nonlinear Stud., 2 (2002), 193-235.

[33]

N. Gamara and R. Yacoub, CR Yamabe conjecture-the conformally flat case, Pacific J. Math., 201 (2001), 121-175. doi: 10.2140/pjm.2001.201.121.

[34]

Z.-C. Han, Prescribing Gaussian curvature on $S^2$, Duke Math. J., 61 (1990), 679-703. doi: 10.1215/S0012-7094-90-06125-3.

[35]

E. Hebey, Changements de métriques conformes sur la sphére. Le probléme de Nirenberg, Bull. Sci. Math., 114 (1990), 215-242.

[36]

D. Jerison and J. M. Lee, The Yamabe problem on CR manifolds, J. Differential Geom., 25 (1987), 167-197.

[37]

D. Jerison and J. M. Lee, Extremals for the Sobolev inequality on the Heisenberg group and the CR Yamabe problem, J. Amer. Math. Soc., 1 (1988), 1-13. doi: 10.2307/1990964.

[38]

D. Jerison and J. M. Lee, Intrinsic CR normal coordinates and the CR Yamabe problem, J. Differential Geom., 29 (1989), 303-343.

[39]

J. M. Lee and T. H. Parker, The Yamabe problem, Bull. Amer. Math. Soc. (N.S.), 17 (1987), 37-91. doi: 10.1090/S0273-0979-1987-15514-5.

[40]

Y. Y. Li, Prescribing scalar curvature on $S^n$ and related problems. I, J. Differential Equations, 120 (1995), 319-410. doi: 10.1006/jdeq.1995.1115.

[41]

E. H. Lieb, Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities, Ann. of Math. (2), 118 (1983), 349-374. doi: 10.2307/2007032.

[42]

E. H. Lieb and M. Loss, Analysis, vol. 14 of Graduate Studies in Mathematics, 2nd edition, American Mathematical Society, Providence, RI, 2001.

[43]

A. Malchiodi and F. Uguzzoni, A perturbation result for the Webster scalar curvature problem on the CR sphere, J. Math. Pures Appl. (9), 81 (2002), 983-997. doi: 10.1016/S0021-7824(01)01249-1.

[44]

J. J. Manfredi and B. Stroffolini, A version of the Hopf-Lax formula in the Heisenberg group, Comm. Partial Differential Equations, 27 (2002), 1139-1159. doi: 10.1081/PDE-120004897.

[45]

J. Moser, On a nonlinear problem in differential geometry, 273-280.

[46]

E. Salem and N. Gamara, The Webster scalar curvature revisited: the case of the three dimensional CR sphere, Calc. Var. Partial Differential Equations, 42 (2011), 107-136. doi: 10.1007/s00526-010-0382-7.

[1]

Ali Maalaoui. A note on commutators of the fractional sub-Laplacian on Carnot groups. Communications on Pure & Applied Analysis, 2019, 18 (1) : 435-453. doi: 10.3934/cpaa.2019022

[2]

Xudong Shang, Jihui Zhang, Yang Yang. Positive solutions of nonhomogeneous fractional Laplacian problem with critical exponent. Communications on Pure & Applied Analysis, 2014, 13 (2) : 567-584. doi: 10.3934/cpaa.2014.13.567

[3]

Maoding Zhen, Jinchun He, Haoyun Xu. Critical system involving fractional Laplacian. Communications on Pure & Applied Analysis, 2019, 18 (1) : 237-253. doi: 10.3934/cpaa.2019013

[4]

Ali Maalaoui. Prescribing the Q-curvature on the sphere with conical singularities. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 6307-6330. doi: 10.3934/dcds.2016074

[5]

Mikko Kemppainen, Peter Sjögren, José Luis Torrea. Wave extension problem for the fractional Laplacian. Discrete & Continuous Dynamical Systems - A, 2015, 35 (10) : 4905-4929. doi: 10.3934/dcds.2015.35.4905

[6]

Qingfang Wang. The Nehari manifold for a fractional Laplacian equation involving critical nonlinearities. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2261-2281. doi: 10.3934/cpaa.2018108

[7]

Ali Hyder, Luca Martinazzi. Conformal metrics on $\mathbb{R}^{2m}$ with constant Q-curvature, prescribed volume and asymptotic behavior. Discrete & Continuous Dynamical Systems - A, 2015, 35 (1) : 283-299. doi: 10.3934/dcds.2015.35.283

[8]

Rafał Kamocki, Marek Majewski. On the continuous dependence of solutions to a fractional Dirichlet problem. The case of saddle points. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2557-2568. doi: 10.3934/dcdsb.2014.19.2557

[9]

Yutong Chen, Jiabao Su. Resonant problems for fractional Laplacian. Communications on Pure & Applied Analysis, 2017, 16 (1) : 163-188. doi: 10.3934/cpaa.2017008

[10]

Patrizia Pucci, Mingqi Xiang, Binlin Zhang. A diffusion problem of Kirchhoff type involving the nonlocal fractional p-Laplacian. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 4035-4051. doi: 10.3934/dcds.2017171

[11]

Mingqi Xiang, Binlin Zhang. A critical fractional p-Kirchhoff type problem involving discontinuous nonlinearity. Discrete & Continuous Dynamical Systems - S, 2019, 12 (2) : 413-433. doi: 10.3934/dcdss.2019027

[12]

Yuan Zhao, Shunfu Jin, Wuyi Yue. Adjustable admission control with threshold in centralized CR networks: Analysis and optimization. Journal of Industrial & Management Optimization, 2015, 11 (4) : 1393-1408. doi: 10.3934/jimo.2015.11.1393

[13]

Qi S. Zhang. Nonlinear parabolic problems on manifolds, and a nonexistence result for the noncompact Yamabe problem. Electronic Research Announcements, 1997, 3: 45-51.

[14]

Miaomiao Niu, Zhongwei Tang. Least energy solutions for nonlinear Schrödinger equation involving the fractional Laplacian and critical growth. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 3963-3987. doi: 10.3934/dcds.2017168

[15]

Yuxia Guo, Jianjun Nie. Infinitely many non-radial solutions for the prescribed curvature problem of fractional operator. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 6873-6898. doi: 10.3934/dcds.2016099

[16]

Yanqin Fang, De Tang. Method of sub-super solutions for fractional elliptic equations. Discrete & Continuous Dynamical Systems - B, 2018, 23 (8) : 3153-3165. doi: 10.3934/dcdsb.2017212

[17]

De Tang, Yanqin Fang. Regularity and nonexistence of solutions for a system involving the fractional Laplacian. Communications on Pure & Applied Analysis, 2015, 14 (6) : 2431-2451. doi: 10.3934/cpaa.2015.14.2431

[18]

Lizhi Zhang. Symmetry of solutions to semilinear equations involving the fractional laplacian. Communications on Pure & Applied Analysis, 2015, 14 (6) : 2393-2409. doi: 10.3934/cpaa.2015.14.2393

[19]

Selma Yildirim Yolcu, Türkay Yolcu. Sharper estimates on the eigenvalues of Dirichlet fractional Laplacian. Discrete & Continuous Dynamical Systems - A, 2015, 35 (5) : 2209-2225. doi: 10.3934/dcds.2015.35.2209

[20]

Tingzhi Cheng. Monotonicity and symmetry of solutions to fractional Laplacian equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 3587-3599. doi: 10.3934/dcds.2017154

2017 Impact Factor: 0.884

Metrics

  • PDF downloads (56)
  • HTML views (278)
  • Cited by (0)

Other articles
by authors

[Back to Top]