-
Previous Article
Positive radial solutions of a nonlinear boundary value problem
- CPAA Home
- This Issue
-
Next Article
Homoclinic solutions of discrete $ \phi $-Laplacian equations with mixed nonlinearities
On existence and nonexistence of positive solutions of an elliptic system with coupled terms
1. | Institute of Mathematics, School of Mathematical Sciences, Nanjing Normal University, Nanjing, Jiangsu, 210023, China |
2. | Jiangsu Key Laboratory for NSLSCS, School of Mathematical Sciences, Nanjing Normal University, Nanjing, 210023, China |
$\begin{cases}-{\triangle u} = (q+1)u^qv^{p+1},~~ u>0~ in~ R^n,\\-{\triangle v} = (p+1)v^pu^{q+1},~~ v>0~in ~R^n,\end{cases}$ |
$ n ≥ 3 $ |
$ p,q>0 $ |
$ \max\{p,q\} ≥ 1 $ |
References:
[1] |
M.-F. Bidaut-Véron and Th. Raoux,
Asymptotics of solutions of some nonlinear elliptic systems, Comm. Partial Differential Equations, 21 (1996), 1035-1086.
doi: 10.1080/03605309608821217. |
[2] |
L. Caffarelli, B. Gidas and J. Spruck,
Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth, Comm. Pure Appl. Math., 42 (1989), 271-297.
doi: 10.1002/cpa.3160420304. |
[3] |
G. Caristi, L. D'Ambrosio and E. Mitidieri,
Representation formulae for solutions to some classes of higher order systems and related Liouville theorems, Milan J. Math., 76 (2008), 27-67.
doi: 10.1007/s00032-008-0090-3. |
[4] |
W. Chen, L. Dupaigne and M. Ghergu,
A new critical curve for the Lane-Emden system, Discrete Contin. Dyn. Syst., 34 (2014), 2469-2479.
doi: 10.3934/dcds.2014.34.2469. |
[5] |
W. Chen and C. Li,
Classification of solutions of some nonlinear elliptic equations, Duke Math. J., 63 (1991), 615-622.
doi: 10.1215/S0012-7094-91-06325-8. |
[6] |
W. Chen and C. Li,
Classification of positive solutions for nonlinear differential and integral systems with critical exponents, Acta Math. Sci., 29B (2009), 949-960.
doi: 10.1016/S0252-9602(09)60079-5. |
[7] |
W. Chen and C. Li, Methods on Nonlinear Elliptic Equations, AIMS Book Series on Diff. Equa. Dyn. Sys., Vol. 4, 2010. |
[8] |
W. Chen and C. Li,
Super polyharmonic property of solutions for PDE systems and its applications, Commun. Pure Appl. Anal., 12 (2013), 2497-2514.
doi: 10.3934/cpaa.2013.12.2497. |
[9] |
W. Chen, C. Li and B. Ou,
Classification of solutions for an integral equation, Comm. Pure Appl. Math., 59 (2006), 330-343.
doi: 10.1002/cpa.20116. |
[10] |
K. Chou and C. Chu,
On the best constant for a weighted Sobolev-Hardy inequality, J. London Math. Soc., 2 (1993), 137-151.
doi: 10.1112/jlms/s2-48.1.137. |
[11] |
J. Davila, L. Dupaigne, K. Wang and J. Wei,
A monotonicity formula and a Liouville-type theorem for a fourth order supercritical problem, Adv. Math., 258 (2014), 240-285.
doi: 10.1016/j.aim.2014.02.034. |
[12] |
A. Farina,
On the classification of solutions of the Lane-Emden equation on unbounded domains of $ R^N $, J. Math. Pures Appl., 87 (2007), 537-561.
doi: 10.1016/j.matpur.2007.03.001. |
[13] |
B. Gidas, W. -M. Ni and L. Nirenberg, Symmetry of positive solutions of nonlinear elliptic equations in $ R^{n} $ (collected in the book Mathematical Analysis and Applications, which is vol. 7a of the book series Advances in Mathematics. Supplementary Studies, Academic Press, New York, 1981. ) |
[14] |
B. Gidas and J. Spruck,
Global and local behavior of positive solutions of nonlinear elliptic equations, Comm. Pure Appl. Math., 34 (1981), 525-598.
doi: 10.1002/cpa.3160340406. |
[15] |
D. Joseph and T. Lundgren, Quasilinear Dirichlet problems driven by positive sources, Arch. Rational Meth. Anal., 49 (1972/73), 241-269.
doi: 10.1007/BF00250508. |
[16] |
Y. Lei,
On the regularity of positive solutions of a class of Choquard type equations, Math. Z., 273 (2013), 883-905.
doi: 10.1007/s00209-012-1036-6. |
[17] |
Y. Lei and C. Li, Sharp criteria of Liouville type for some nonlinear systems, Discrete Contin. Dyn. Syst., 36 (2016), 3277-3315.
doi: 10.3934/dcds.2016.36.3277. |
[18] |
W.-M. Ni,
On the elliptic equation $ Δ u+K(x)u^{(n+2)/(n-2)} = 0 $, its generalizations, and applications in geometry, Indiana Univ. Math. J., 31 (1982), 493-529.
doi: 10.1512/iumj.1982.31.31040. |
[19] |
W.-M. Ni and J. Serrin, Existence and nonexistence theorems for ground states of quasilinear partial differential equations. The anomalous case, Accad. Naz. Lincei., 77 (1986), 231-257. Google Scholar |
[20] |
P. Polacik, P. Quittner and Ph. Souplet,
Singularity and decay estimates in superlinear problems via Liouville-type theorems. Part Ⅰ: Elliptic equations and systems, Duke Math. J., 139 (2007), 555-579.
doi: 10.1215/S0012-7094-07-13935-8. |
[21] |
P. Quittner and Ph. Souplet,
Symmetry of components for semilinear elliptic systems, SIAM J. Math. Anal., 44 (2012), 2545-2559.
doi: 10.1137/11085428X. |
[22] |
J. Serrin,
Isolated singularities of solutions of quasilinear equations, Acta Math., 113 (1965), 219-240.
|
[23] |
X. Wang,
On the Cauchy problem for reaction-diffusion equations, Trans. Amer. Math. Soc., 337 (1993), 549-590.
doi: 10.2307/2154232. |
[24] |
Y. Zhao and Y. Lei, Asymptotic behavior of positive solutions of a nonlinear integral system, Nonlinear Anal., 75 (2012), 1989-1999.
doi: 10.1016/j.na.2011.09.051. |
show all references
References:
[1] |
M.-F. Bidaut-Véron and Th. Raoux,
Asymptotics of solutions of some nonlinear elliptic systems, Comm. Partial Differential Equations, 21 (1996), 1035-1086.
doi: 10.1080/03605309608821217. |
[2] |
L. Caffarelli, B. Gidas and J. Spruck,
Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth, Comm. Pure Appl. Math., 42 (1989), 271-297.
doi: 10.1002/cpa.3160420304. |
[3] |
G. Caristi, L. D'Ambrosio and E. Mitidieri,
Representation formulae for solutions to some classes of higher order systems and related Liouville theorems, Milan J. Math., 76 (2008), 27-67.
doi: 10.1007/s00032-008-0090-3. |
[4] |
W. Chen, L. Dupaigne and M. Ghergu,
A new critical curve for the Lane-Emden system, Discrete Contin. Dyn. Syst., 34 (2014), 2469-2479.
doi: 10.3934/dcds.2014.34.2469. |
[5] |
W. Chen and C. Li,
Classification of solutions of some nonlinear elliptic equations, Duke Math. J., 63 (1991), 615-622.
doi: 10.1215/S0012-7094-91-06325-8. |
[6] |
W. Chen and C. Li,
Classification of positive solutions for nonlinear differential and integral systems with critical exponents, Acta Math. Sci., 29B (2009), 949-960.
doi: 10.1016/S0252-9602(09)60079-5. |
[7] |
W. Chen and C. Li, Methods on Nonlinear Elliptic Equations, AIMS Book Series on Diff. Equa. Dyn. Sys., Vol. 4, 2010. |
[8] |
W. Chen and C. Li,
Super polyharmonic property of solutions for PDE systems and its applications, Commun. Pure Appl. Anal., 12 (2013), 2497-2514.
doi: 10.3934/cpaa.2013.12.2497. |
[9] |
W. Chen, C. Li and B. Ou,
Classification of solutions for an integral equation, Comm. Pure Appl. Math., 59 (2006), 330-343.
doi: 10.1002/cpa.20116. |
[10] |
K. Chou and C. Chu,
On the best constant for a weighted Sobolev-Hardy inequality, J. London Math. Soc., 2 (1993), 137-151.
doi: 10.1112/jlms/s2-48.1.137. |
[11] |
J. Davila, L. Dupaigne, K. Wang and J. Wei,
A monotonicity formula and a Liouville-type theorem for a fourth order supercritical problem, Adv. Math., 258 (2014), 240-285.
doi: 10.1016/j.aim.2014.02.034. |
[12] |
A. Farina,
On the classification of solutions of the Lane-Emden equation on unbounded domains of $ R^N $, J. Math. Pures Appl., 87 (2007), 537-561.
doi: 10.1016/j.matpur.2007.03.001. |
[13] |
B. Gidas, W. -M. Ni and L. Nirenberg, Symmetry of positive solutions of nonlinear elliptic equations in $ R^{n} $ (collected in the book Mathematical Analysis and Applications, which is vol. 7a of the book series Advances in Mathematics. Supplementary Studies, Academic Press, New York, 1981. ) |
[14] |
B. Gidas and J. Spruck,
Global and local behavior of positive solutions of nonlinear elliptic equations, Comm. Pure Appl. Math., 34 (1981), 525-598.
doi: 10.1002/cpa.3160340406. |
[15] |
D. Joseph and T. Lundgren, Quasilinear Dirichlet problems driven by positive sources, Arch. Rational Meth. Anal., 49 (1972/73), 241-269.
doi: 10.1007/BF00250508. |
[16] |
Y. Lei,
On the regularity of positive solutions of a class of Choquard type equations, Math. Z., 273 (2013), 883-905.
doi: 10.1007/s00209-012-1036-6. |
[17] |
Y. Lei and C. Li, Sharp criteria of Liouville type for some nonlinear systems, Discrete Contin. Dyn. Syst., 36 (2016), 3277-3315.
doi: 10.3934/dcds.2016.36.3277. |
[18] |
W.-M. Ni,
On the elliptic equation $ Δ u+K(x)u^{(n+2)/(n-2)} = 0 $, its generalizations, and applications in geometry, Indiana Univ. Math. J., 31 (1982), 493-529.
doi: 10.1512/iumj.1982.31.31040. |
[19] |
W.-M. Ni and J. Serrin, Existence and nonexistence theorems for ground states of quasilinear partial differential equations. The anomalous case, Accad. Naz. Lincei., 77 (1986), 231-257. Google Scholar |
[20] |
P. Polacik, P. Quittner and Ph. Souplet,
Singularity and decay estimates in superlinear problems via Liouville-type theorems. Part Ⅰ: Elliptic equations and systems, Duke Math. J., 139 (2007), 555-579.
doi: 10.1215/S0012-7094-07-13935-8. |
[21] |
P. Quittner and Ph. Souplet,
Symmetry of components for semilinear elliptic systems, SIAM J. Math. Anal., 44 (2012), 2545-2559.
doi: 10.1137/11085428X. |
[22] |
J. Serrin,
Isolated singularities of solutions of quasilinear equations, Acta Math., 113 (1965), 219-240.
|
[23] |
X. Wang,
On the Cauchy problem for reaction-diffusion equations, Trans. Amer. Math. Soc., 337 (1993), 549-590.
doi: 10.2307/2154232. |
[24] |
Y. Zhao and Y. Lei, Asymptotic behavior of positive solutions of a nonlinear integral system, Nonlinear Anal., 75 (2012), 1989-1999.
doi: 10.1016/j.na.2011.09.051. |
[1] |
Riadh Chteoui, Abdulrahman F. Aljohani, Anouar Ben Mabrouk. Classification and simulation of chaotic behaviour of the solutions of a mixed nonlinear Schrödinger system. Electronic Research Archive, , () : -. doi: 10.3934/era.2021002 |
[2] |
Isabeau Birindelli, Françoise Demengel, Fabiana Leoni. Boundary asymptotics of the ergodic functions associated with fully nonlinear operators through a Liouville type theorem. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020395 |
[3] |
Mathew Gluck. Classification of solutions to a system of $ n^{\rm th} $ order equations on $ \mathbb R^n $. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5413-5436. doi: 10.3934/cpaa.2020246 |
[4] |
Jann-Long Chern, Sze-Guang Yang, Zhi-You Chen, Chih-Her Chen. On the family of non-topological solutions for the elliptic system arising from a product Abelian gauge field theory. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3291-3304. doi: 10.3934/dcds.2020127 |
[5] |
Teresa D'Aprile. Bubbling solutions for the Liouville equation around a quantized singularity in symmetric domains. Communications on Pure & Applied Analysis, 2021, 20 (1) : 159-191. doi: 10.3934/cpaa.2020262 |
[6] |
Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020340 |
[7] |
Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272 |
[8] |
Lucio Damascelli, Filomena Pacella. Sectional symmetry of solutions of elliptic systems in cylindrical domains. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3305-3325. doi: 10.3934/dcds.2020045 |
[9] |
Pierre Baras. A generalization of a criterion for the existence of solutions to semilinear elliptic equations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 465-504. doi: 10.3934/dcdss.2020439 |
[10] |
Sishu Shankar Muni, Robert I. McLachlan, David J. W. Simpson. Homoclinic tangencies with infinitely many asymptotically stable single-round periodic solutions. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021010 |
[11] |
Peng Luo. Comparison theorem for diagonally quadratic BSDEs. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020374 |
[12] |
Craig Cowan, Abdolrahman Razani. Singular solutions of a Lane-Emden system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 621-656. doi: 10.3934/dcds.2020291 |
[13] |
Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075 |
[14] |
Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020436 |
[15] |
Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119 |
[16] |
Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1749-1762. doi: 10.3934/dcdsb.2020318 |
[17] |
Alessandro Carbotti, Giovanni E. Comi. A note on Riemann-Liouville fractional Sobolev spaces. Communications on Pure & Applied Analysis, 2021, 20 (1) : 17-54. doi: 10.3934/cpaa.2020255 |
[18] |
Rong Chen, Shihang Pan, Baoshuai Zhang. Global conservative solutions for a modified periodic coupled Camassa-Holm system. Electronic Research Archive, 2021, 29 (1) : 1691-1708. doi: 10.3934/era.2020087 |
[19] |
Shin-Ichiro Ei, Shyuh-Yaur Tzeng. Spike solutions for a mass conservation reaction-diffusion system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3357-3374. doi: 10.3934/dcds.2020049 |
[20] |
Xiaoping Zhai, Yongsheng Li. Global large solutions and optimal time-decay estimates to the Korteweg system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1387-1413. doi: 10.3934/dcds.2020322 |
2019 Impact Factor: 1.105
Tools
Metrics
Other articles
by authors
[Back to Top]