# American Institute of Mathematical Sciences

• Previous Article
On the blow-up solutions for the fractional nonlinear Schrödinger equation with combined power-type nonlinearities
• CPAA Home
• This Issue
• Next Article
On existence and nonexistence of positive solutions of an elliptic system with coupled terms
September  2018, 17(5): 1765-1783. doi: 10.3934/cpaa.2018084

## Positive radial solutions of a nonlinear boundary value problem

 1 Universidad de Santiago de Chile, Casilla 307, Correo 2, Santiago, Chile 2 Universidad Técnica Federico Santa María, Av. Espana 1680, Casilla 110-V, Valparaíso, Chile 3 Instituto de Alta Investigación, Universidad de Tarapacá Casilla 7-D, Arica, Chile

Received  May 2017 Revised  January 2018 Published  April 2018

In this work we study the following quasilinear elliptic equation:
 $\left\{ {\begin{array}{*{20}{l}}{ - {\rm{div}}(\frac{{|x{|^\alpha }\nabla u}}{{{{(a(|x|) + g(u))}^\gamma }}}) = |x{|^\beta }{u^p}}&{{\rm{in}} \ \Omega }\\{u = 0}&{{\rm{on}}\;\;\;\;\partial \Omega }\end{array}} \right.$
where
 $a$
is a positive continuous function,
 $g$
is a nonnegative and nondecreasing continuous function,
 $Ω = B_R$
, is the ball of radius
 $R>0$
centered at the origin in
 $\mathbb{R} ^N$
,
 $N≥3$
and, the constants
 $α,β∈\mathbb{R}$
,
 $γ∈(0,1)$
and
 $p>1$
.
We derive a new Liouville type result for a kind of "broken equation". This result together with blow-up techniques, a priori estimates and a fixed-point result of Krasnosel'skii, allow us to ensure the existence of a positive radial solution. In this paper we also obtain a non-existence result, proven through a variation of the Pohozaev identity.
Citation: Patricio Cerda, Leonelo Iturriaga, Sebastián Lorca, Pedro Ubilla. Positive radial solutions of a nonlinear boundary value problem. Communications on Pure & Applied Analysis, 2018, 17 (5) : 1765-1783. doi: 10.3934/cpaa.2018084
##### References:
 [1] A. Alvino, L. Boccardo, V. Ferone, L. Orsina and G. Trombetti, Existence results for nonlinear elliptic equations with degenerate coercivity, Annali di Matematica., 182 (2000), 53-79.   Google Scholar [2] A. Benkirane, A. Youssfi and D. Meskine, Bounded solutions for nonlinear elliptic equations with degenerate coercivity and data in an L log L, Bull. Belg Math. Soc. Simon Stevin, 15 (2008), 369-375.   Google Scholar [3] L. Boccardo, Some elliptic problems whit degenerate coercivity, Avanced Nonlinear Studies,, 6 (2006), 1-12.   Google Scholar [4] L. Boccardo and H. Brezis, Some Remarks on a class of elliptic equations with degenerate coercivity, Bollettino U. M. I., 8 (2003), 521-530.   Google Scholar [5] L. Boccardo, A. Dall'aglio and L. Orsina, Existence and regularity results for some elliptic equations with degenerate coercivity, Atti Sem. Mat. Fis. Univ. Modena., 46 (1998), suppl., 51-81.   Google Scholar [6] L. Boccardo, S. Segura de León and C. Trombetti, Bounded and unbounded solutions for a class of quasi-linear elliptic problems whit a quadratic gradient term, J. Math. Pures Appl., 9 (2001), 919-940.   Google Scholar [7] P. Clement, D. de Figueiredo and E. Mitidieri, Quasilinear elliptic equation with critical exponents, Topol. Methods Nonlinear Anal., 7 (1996), 133-170.   Google Scholar [8] P. Clement, R. Manásevich and E. Mitidieri, Positive solutions for a quasilinear system via blow up, Comm. in P.D.E., 18 (1993), 2071-2106.   Google Scholar [9] L. Evans, Partial Differential Equations, American Mathematical Soc., 01 June 1998. Google Scholar [10] M. A. Krasnosel'skii, Positive Solutions of Operators Equations, Noordhoff, Groningen, 1964. Google Scholar [11] S. N. Armstrong and B. Sirakov, Nonexistence of positive supersolutions of elliptic equations via the maximum principle, Comm. Partial Differential Equations, 36 (2011), 2011-2047.   Google Scholar [12] M-F. Bidaut-Veron, Local and global behavior of solutions of quasilinear equations of Emden-Fowler type, Arch. Rational Mech. Anal., 107 (1989), 293-324.   Google Scholar [13] M-F. Bidaut-Veron and S. Pohozaev, Nonexistence results and estimates for some nonlinear elliptic problems, J. Anal. Math., 84 (2001), 1-49.   Google Scholar [14] Ph. Clement, D. G. de Figueiredo and E. Mitidieri, Positive solutions of semilinear elliptic systems, Comm. Partial Differential Equations, 17 (1992), 923-940.   Google Scholar [15] L. Damascelli, A. Farina, B. Sciunzi and E. Valdinoci, Liouville results for m-Laplace equations of Lane-Emden-Fowler type, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 1099-1119 Google Scholar [16] B. Gidas and J. Spruck, A priori bounds for positive solutions of nonlinear elliptic equations, Comm. Partial Differential Equations, 6 (1981), 883-901.   Google Scholar [17] B. Gidas and J. Spruck, J. Global and local behavior of positive solutions of nonlinear elliptic equations, Comm. Pure Appl. Math., 34 (1981), 525-598.   Google Scholar [18] N. Kawano, W. Ni and S. Yotsutani, A generalized Pohozaev identity and its applications, J. Math. Soc. Jpn., 42 (1990), 541-564.   Google Scholar [19] M. A. Krasnoselskii, Fixed point of cone-compressing or cone-extending operators Soviet, Math. Dokl., 1 (1960), 1285-1288.   Google Scholar [20] E. Mitidieri and S. I. Pokhozhaev, Absence of positive solutions for quasilinear elliptic problems in $\mathbb{R} ^N$, Tr. Mat. Inst. Steklova, 227 (1999) 192-222 (Issled. po Teor. Differ. Funkts. Mnogikh Perem. i ee Prilozh. 18). Google Scholar [21] S. I. Pohožaev, On the eigenfunctions of the equation $Δ u+λ f(u)=0$, Dokl. Akad. Nauk SSSR, 165 (1965), 36-39.   Google Scholar [22] J. Serrin and H. Zou, Cauchy-Liouville and universal boundedness theorems for quasilinear elliptic equations and inequalities, Acta Math., 189 (2002), 79-142.   Google Scholar

show all references

##### References:
 [1] A. Alvino, L. Boccardo, V. Ferone, L. Orsina and G. Trombetti, Existence results for nonlinear elliptic equations with degenerate coercivity, Annali di Matematica., 182 (2000), 53-79.   Google Scholar [2] A. Benkirane, A. Youssfi and D. Meskine, Bounded solutions for nonlinear elliptic equations with degenerate coercivity and data in an L log L, Bull. Belg Math. Soc. Simon Stevin, 15 (2008), 369-375.   Google Scholar [3] L. Boccardo, Some elliptic problems whit degenerate coercivity, Avanced Nonlinear Studies,, 6 (2006), 1-12.   Google Scholar [4] L. Boccardo and H. Brezis, Some Remarks on a class of elliptic equations with degenerate coercivity, Bollettino U. M. I., 8 (2003), 521-530.   Google Scholar [5] L. Boccardo, A. Dall'aglio and L. Orsina, Existence and regularity results for some elliptic equations with degenerate coercivity, Atti Sem. Mat. Fis. Univ. Modena., 46 (1998), suppl., 51-81.   Google Scholar [6] L. Boccardo, S. Segura de León and C. Trombetti, Bounded and unbounded solutions for a class of quasi-linear elliptic problems whit a quadratic gradient term, J. Math. Pures Appl., 9 (2001), 919-940.   Google Scholar [7] P. Clement, D. de Figueiredo and E. Mitidieri, Quasilinear elliptic equation with critical exponents, Topol. Methods Nonlinear Anal., 7 (1996), 133-170.   Google Scholar [8] P. Clement, R. Manásevich and E. Mitidieri, Positive solutions for a quasilinear system via blow up, Comm. in P.D.E., 18 (1993), 2071-2106.   Google Scholar [9] L. Evans, Partial Differential Equations, American Mathematical Soc., 01 June 1998. Google Scholar [10] M. A. Krasnosel'skii, Positive Solutions of Operators Equations, Noordhoff, Groningen, 1964. Google Scholar [11] S. N. Armstrong and B. Sirakov, Nonexistence of positive supersolutions of elliptic equations via the maximum principle, Comm. Partial Differential Equations, 36 (2011), 2011-2047.   Google Scholar [12] M-F. Bidaut-Veron, Local and global behavior of solutions of quasilinear equations of Emden-Fowler type, Arch. Rational Mech. Anal., 107 (1989), 293-324.   Google Scholar [13] M-F. Bidaut-Veron and S. Pohozaev, Nonexistence results and estimates for some nonlinear elliptic problems, J. Anal. Math., 84 (2001), 1-49.   Google Scholar [14] Ph. Clement, D. G. de Figueiredo and E. Mitidieri, Positive solutions of semilinear elliptic systems, Comm. Partial Differential Equations, 17 (1992), 923-940.   Google Scholar [15] L. Damascelli, A. Farina, B. Sciunzi and E. Valdinoci, Liouville results for m-Laplace equations of Lane-Emden-Fowler type, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 1099-1119 Google Scholar [16] B. Gidas and J. Spruck, A priori bounds for positive solutions of nonlinear elliptic equations, Comm. Partial Differential Equations, 6 (1981), 883-901.   Google Scholar [17] B. Gidas and J. Spruck, J. Global and local behavior of positive solutions of nonlinear elliptic equations, Comm. Pure Appl. Math., 34 (1981), 525-598.   Google Scholar [18] N. Kawano, W. Ni and S. Yotsutani, A generalized Pohozaev identity and its applications, J. Math. Soc. Jpn., 42 (1990), 541-564.   Google Scholar [19] M. A. Krasnoselskii, Fixed point of cone-compressing or cone-extending operators Soviet, Math. Dokl., 1 (1960), 1285-1288.   Google Scholar [20] E. Mitidieri and S. I. Pokhozhaev, Absence of positive solutions for quasilinear elliptic problems in $\mathbb{R} ^N$, Tr. Mat. Inst. Steklova, 227 (1999) 192-222 (Issled. po Teor. Differ. Funkts. Mnogikh Perem. i ee Prilozh. 18). Google Scholar [21] S. I. Pohožaev, On the eigenfunctions of the equation $Δ u+λ f(u)=0$, Dokl. Akad. Nauk SSSR, 165 (1965), 36-39.   Google Scholar [22] J. Serrin and H. Zou, Cauchy-Liouville and universal boundedness theorems for quasilinear elliptic equations and inequalities, Acta Math., 189 (2002), 79-142.   Google Scholar
 [1] Laura Baldelli, Roberta Filippucci. A priori estimates for elliptic problems via Liouville type theorems. Discrete & Continuous Dynamical Systems - S, 2020, 13 (7) : 1883-1898. doi: 10.3934/dcdss.2020148 [2] Tomasz Adamowicz, Przemysław Górka. The Liouville theorems for elliptic equations with nonstandard growth. Communications on Pure & Applied Analysis, 2015, 14 (6) : 2377-2392. doi: 10.3934/cpaa.2015.14.2377 [3] D. Bartolucci, L. Orsina. Uniformly elliptic Liouville type equations: concentration compactness and a priori estimates. Communications on Pure & Applied Analysis, 2005, 4 (3) : 499-522. doi: 10.3934/cpaa.2005.4.499 [4] SYLWIA DUDEK, IWONA SKRZYPCZAK. Liouville theorems for elliptic problems in variable exponent spaces. Communications on Pure & Applied Analysis, 2017, 16 (2) : 513-532. doi: 10.3934/cpaa.2017026 [5] Tiziana Cardinali, Paola Rubbioni. Existence theorems for generalized nonlinear quadratic integral equations via a new fixed point result. Discrete & Continuous Dynamical Systems - S, 2020, 13 (7) : 1947-1955. doi: 10.3934/dcdss.2020152 [6] Parin Chaipunya, Poom Kumam. Fixed point theorems for cyclic operators with application in Fractional integral inclusions with delays. Conference Publications, 2015, 2015 (special) : 248-257. doi: 10.3934/proc.2015.0248 [7] M. Á. Burgos-Pérez, J. García-Melián, A. Quaas. Classification of supersolutions and Liouville theorems for some nonlinear elliptic problems. Discrete & Continuous Dynamical Systems - A, 2016, 36 (9) : 4703-4721. doi: 10.3934/dcds.2016004 [8] Pavol Quittner, Philippe Souplet. Parabolic Liouville-type theorems via their elliptic counterparts. Conference Publications, 2011, 2011 (Special) : 1206-1213. doi: 10.3934/proc.2011.2011.1206 [9] Phuong Le. Liouville theorems for stable weak solutions of elliptic problems involving Grushin operator. Communications on Pure & Applied Analysis, 2020, 19 (1) : 511-525. doi: 10.3934/cpaa.2020025 [10] Xavier Cabré, Manel Sanchón, Joel Spruck. A priori estimates for semistable solutions of semilinear elliptic equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 601-609. doi: 10.3934/dcds.2016.36.601 [11] Xiaohui Yu. Liouville type theorems for singular integral equations and integral systems. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1825-1840. doi: 10.3934/cpaa.2016017 [12] Dong Li, Xinwei Yu. On some Liouville type theorems for the compressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4719-4733. doi: 10.3934/dcds.2014.34.4719 [13] Paolo Perfetti. Fixed point theorems in the Arnol'd model about instability of the action-variables in phase-space. Discrete & Continuous Dynamical Systems - A, 1998, 4 (2) : 379-391. doi: 10.3934/dcds.1998.4.379 [14] Alberto Farina. Symmetry of components, Liouville-type theorems and classification results for some nonlinear elliptic systems. Discrete & Continuous Dynamical Systems - A, 2015, 35 (12) : 5869-5877. doi: 10.3934/dcds.2015.35.5869 [15] Philippe Souplet. Liouville-type theorems for elliptic Schrödinger systems associated with copositive matrices. Networks & Heterogeneous Media, 2012, 7 (4) : 967-988. doi: 10.3934/nhm.2012.7.967 [16] Quoc Hung Phan. Optimal Liouville-type theorems for a parabolic system. Discrete & Continuous Dynamical Systems - A, 2015, 35 (1) : 399-409. doi: 10.3934/dcds.2015.35.399 [17] Phuong Le. Liouville theorems for an integral equation of Choquard type. Communications on Pure & Applied Analysis, 2020, 19 (2) : 771-783. doi: 10.3934/cpaa.2020036 [18] Dongho Chae, Shangkun Weng. Liouville type theorems for the steady axially symmetric Navier-Stokes and magnetohydrodynamic equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5267-5285. doi: 10.3934/dcds.2016031 [19] Anna Maria Candela, Giuliana Palmieri. Some abstract critical point theorems and applications. Conference Publications, 2009, 2009 (Special) : 133-142. doi: 10.3934/proc.2009.2009.133 [20] Lorenzo D'Ambrosio, Enzo Mitidieri. Hardy-Littlewood-Sobolev systems and related Liouville theorems. Discrete & Continuous Dynamical Systems - S, 2014, 7 (4) : 653-671. doi: 10.3934/dcdss.2014.7.653

2018 Impact Factor: 0.925