• Previous Article
    $ \mathcal{W}$-Entropy formulae and differential Harnack estimates for porous medium equations on Riemannian manifolds
  • CPAA Home
  • This Issue
  • Next Article
    Coupled systems of Hilfer fractional differential inclusions in banach spaces
November 2018, 17(6): 2455-2477. doi: 10.3934/cpaa.2018117

Well-posedness for a non-isothermal flow of two viscous incompressible fluids

Departamento de Matemática, Instituto de Matemática, Estatística e Computação Científica, Universidade Estadual de Campinas, Rua Sergio Buarque de Holanda, 651, 13083-859, Campinas - SP, Brazil

* Corresponding author

Received  October 2017 Revised  January 2018 Published  June 2018

Fund Project: G. Planas was partially supported by CNPq-Brazil, grants 306646/2015-3 and 402388/2016-0. J. H. Lopes was supported by Capes-Brazil and CNPq-Brazil, grant 143214/2015-2

This work is concerned with a non-isothermal diffuse-interface model which describes the motion of a mixture of two viscous incompressible fluids. The model consists of modified Navier-Stokes equations coupled with a phase-field equation given by a convective Allen-Cahn equation, and energy transport equation for the temperature. This model admits a dissipative energy inequality. It is investigated the well-posedness of the problem in the two and three dimensional cases without any restriction on the size of the initial data. Moreover, regular and singular potentials for the phase-field equation are considered.

Citation: Juliana Honda Lopes, Gabriela Planas. Well-posedness for a non-isothermal flow of two viscous incompressible fluids. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2455-2477. doi: 10.3934/cpaa.2018117
References:
[1]

H. Abels, On a diffuse interface model for two-phase flows of viscous, incompressible fluids with matched densities, Arch. Ration. Mech. Anal., 194 (2009), 463-506. doi: 10.1007/s00205-008-0160-2.

[2]

D. M. AndersonG. B. McFadden and A. A. Wheeler, Diffuse-interface methods in fluid mechanics, Annu. Rev. Fluid Mech., 30 (1998), 139-165. doi: 10.1146/annurev.fluid.30.1.139.

[3]

T. Blesgen, A generalization of the Navier-Stokes equation to two-phase flows, J. Phys. D (Applied Physics), 32 (1999), 1119-1123. doi: 10.1088/0022-3727/32/10/307.

[4]

J. L. Boldrini and G. Planas, Weak solutions of a phase-field model for phase change of an alloy with thermal properties, Math. Methods Appl. Sci., 25 (2002), 1177-1193. doi: 10.1002/mma.334.

[5]

J. W. Cahn and J. E. Hillard, Free energy of a non-uniform system. I. Interfacial free energy, J. Chem. Phys., 28 (1958), 258-267. doi: 10.1063/1.1744102.

[6]

L. Cherfils and A. Miranville, On the Caginalp system with dynamic boundary conditions and singular potentials, Appl. Math., 54 (2009), 89-115. doi: 10.1007/s10492-009-0008-6.

[7]

B. Climent-EzquerraF. Guillén-González and M. J. Moreno-Iraberte, Regularity and time-periodicity for a nematic liquid crystal model, Nonlinear Anal., 71 (2009), 539-549. doi: 10.1016/j.na.2008.10.092.

[8]

M. Doi and S. F. Edwards, The Theory of Polymer Dynamics, Oxford University Press, 1986.

[9]

Q. DuM. Li and C. Liu, Analysis of a phase field Navier-Stokes vesicle-fluid interaction model, Discrete Contin. Dyn. Syst. Ser. B, 8 (2007), 539-556. doi: 10.3934/dcdsb.2007.8.539.

[10]

M. EleuteriE. Rocca and G. Schimperna, On a non-isothermal diffuse interface model for two-phase flows of incompressible fluids, Discrete Contin. Dyn. Syst., 35 (2015), 2497-2522. doi: 10.3934/dcds.2015.35.2497.

[11]

M. EleuteriE. Rocca and G. Schimperna, Existence of solutions to a two-dimensional model for nonisothermal two-phase flows of incompressible fluids, Ann. Inst. H. Poincaré Anal. Non Linéaire, 33 (2016), 1431-1454. doi: 10.1016/j.anihpc.2015.05.006.

[12]

E. FeireislH. PetzeltováE. Rocca and G. Schimperna, Analysis of a phase-field model for two-phase compressible fluids, Math. Models Methods Appl. Sci., 20 (2010), 1129-1160. doi: 10.1142/S0218202510004544.

[13]

J. J. Feng, C. Liu, J. Shen and P. Yue, A energetic variational formulation with phase field methods for interfacial dynamics of complex fluids: advantages and challenges, Modeling of Soft Matter (M. T. Calderer, E. M. Terentjev eds. ), vol. IMA 141, Springer, New York, 2005, 1–26. doi: 10.1007/0-387-32153-5_1.

[14]

X. FengY. He and C. Liu, Analysis of finite element approximations of a phase field model for two-phase fluids, Math. Comp., 76 (2007), 539-571. doi: 10.1090/S0025-5718-06-01915-6.

[15]

S. Forest and M. Amestoy, Hypertemperature in thermoelastic solids, C. R. Mecanique, 336 (2008), 347-353. doi: 10.1016/j.crme.2008.01.007.

[16]

M. Frémond, Non-Smooth Thermomechanics, Springer-Verlag, Berlin, 2002. doi: 10.1007/978-3-662-04800-9.

[17]

A. Friedman, Partial Differential Equations, Dover Books on Mathematics, New York, 2008.

[18]

C. G. Gal and M. Grasselli, Asymptotic behavior of a Cahn-Hilliard-Navier- Stokes system in 2D, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010), 401-436. doi: 10.1016/j.anihpc.2009.11.013.

[19]

C. Gal and M. Grasselli, Longtime behavior for a model of homogeneous incompressible two-phase flows, Discrete Cont. Dyn. Sys., 28 (2010), 1-39. doi: 10.3934/dcds.2010.28.1.

[20]

C. Gal and M. Grasselli, Trajectory attractors for binary fluid mixtures in 3D, Chin. Ann. Math. Ser. B, 31 (2010), 655-678. doi: 10.1007/s11401-010-0603-6.

[21]

P. Grisvard, Elliptic Problems in Nonsmooth Domains, Classics in Applied Mathematics, Boston, 1985. doi: 10.1137/1.9781611972030.

[22]

P. Ireman and Q-S. Nguyen, Using the gradients of temperature and internal parameters in Continuum Thermodynamics, C. R. Mecanique, 332 (2004), 249-255. doi: 10.1016/j.crme.2004.01.012.

[23]

J. JiangY. Li and C. Liu, Two-phase incompressible flows with variable density: An energetic variational approach, Discrete Cont. Dyn. Sys., 37 (2017), 3243-3284. doi: 10.3934/dcds.2017138.

[24]

Y. LiS. Ding and M. Huang, Blow-up criterion for an incompressible Navier-Stokes/Allen-Cahn system with different densities, Discrete Cont. Dyn. Sys. Ser. B, 21 (2016), 1507-1523. doi: 10.3934/dcdsb.2016009.

[25]

F.-H. Lin and C. Liu, Nonparabolic dissipative systems modeling the flow of liquid crystals, Comm. Pure Appl. Math., 48 (1995), 501-537. doi: 10.1002/cpa.3160480503.

[26]

C. Liu and J. Shen, A phase field model for the mixture of two incompressible fluids and its approximation by a Fourier-spectral method, Phys. D., 179 (2003), 211-228. doi: 10.1016/S0167-2789(03)00030-7.

[27]

C. Liu and N. J. Walkington, An eulerian description of fluids containing visco-elastic particles, Arch. Ration. Mech. Anal, 159 (2001), 229-252. doi: 10.1007/s002050100158.

[28]

S. A. Lorca and J. L. Boldrini, The initial value problem for a generalized Boussinesq model, Nonlinear Anal., 36 (1999), 457-480. doi: 10.1016/S0362-546X(97)00635-4.

[29]

P. Marín-RubioG. Planas and J. Real, Asymptotic behaviour of a phase-field model with three coupled equations without uniqueness, J. Differential Equations, 246 (2009), 4632-4652. doi: 10.1016/j.jde.2009.01.021.

[30]

D. S. Mitrinović, J. E. Pečarić and A. M. Fink, Inequalities Involving Functions and Their Integrals and Derivatives, Mathematics and Its Applications 53, Springer-Science+Business Media, 1991. doi: 10.1007/978-94-011-3562-7.

[31]

L. Nirenberg, On elliptic partial differential equations, Ann. Scuola Norm. Super. Pisa Ser. 3, 13 (1959), 115-162. doi: 10.1007/978-3-642-10926-3_1.

[32]

J. Simon, Compacts sets in the space $ L^p(0, T;B)$, Ann. Mat. Pura Appl., 146 (1987), 65-96. doi: 10.1007/BF01762360.

[33]

P. SunC. Liu and J. Xu, Phase field model of thermo-induced Marangoni effects in the mixtures and its numerical simulations with mixed finite element method, Commun. Comput. Phys., 6 (2009), 1095-1117. doi: 10.4208/cicp.2009.v6.p1095.

[34]

Y. Sun and Z. Zhang, Global regularity for the initial-boundary value problem of 2-D Boussinesq system with variable viscosity and thermal diffusivity, J. Differential Equations, 255 (2013), 1069-1085. doi: 10.1016/j.jde.2013.04.032.

[35]

M. E. Taylor, Partial Differential Equations I, Applied Mathematical Sciences, 115, 2011. doi: 10.1007/978-1-4419-7055-8.

[36]

R. Temam, Navier-Stokes Equations, Studies in Mathematics and its Applications 2, North-Holland, Amsterdam, 1977.

[37]

H. Wu, Well-posedness of a diffuse-interface model for two-phase incompressible flows with thermo-induced Marangoni effect, European J. Appl. Math., 28 (2017), 380-434. doi: 10.1017/S0956792516000322.

[38]

H. Wu and X. Xu, Analysis of a diffuse-interface model for the binary viscous incompressible fluids with thermo-induced marangoni effects, Comunn. Math. Sci., 11 (2013), 603-633. doi: 10.4310/CMS.2013.v11.n2.a15.

[39]

X. XuL. Zhao and C. Liu, Axisymmetric solutions to coupled Navier-Stokes/Allen-Cahn equations, SIAM J. Math. Anal, 41 (2010), 2246-2282. doi: 10.1137/090754698.

[40]

X. YangJ. J. FengC. Liu and J. Shen, Numerical simulations of jet pinching-off and drop formation using an energetic variational phase-field method, J. Comput. Phys., 218 (2006), 417-428. doi: 10.1016/j.jcp.2006.02.021.

show all references

References:
[1]

H. Abels, On a diffuse interface model for two-phase flows of viscous, incompressible fluids with matched densities, Arch. Ration. Mech. Anal., 194 (2009), 463-506. doi: 10.1007/s00205-008-0160-2.

[2]

D. M. AndersonG. B. McFadden and A. A. Wheeler, Diffuse-interface methods in fluid mechanics, Annu. Rev. Fluid Mech., 30 (1998), 139-165. doi: 10.1146/annurev.fluid.30.1.139.

[3]

T. Blesgen, A generalization of the Navier-Stokes equation to two-phase flows, J. Phys. D (Applied Physics), 32 (1999), 1119-1123. doi: 10.1088/0022-3727/32/10/307.

[4]

J. L. Boldrini and G. Planas, Weak solutions of a phase-field model for phase change of an alloy with thermal properties, Math. Methods Appl. Sci., 25 (2002), 1177-1193. doi: 10.1002/mma.334.

[5]

J. W. Cahn and J. E. Hillard, Free energy of a non-uniform system. I. Interfacial free energy, J. Chem. Phys., 28 (1958), 258-267. doi: 10.1063/1.1744102.

[6]

L. Cherfils and A. Miranville, On the Caginalp system with dynamic boundary conditions and singular potentials, Appl. Math., 54 (2009), 89-115. doi: 10.1007/s10492-009-0008-6.

[7]

B. Climent-EzquerraF. Guillén-González and M. J. Moreno-Iraberte, Regularity and time-periodicity for a nematic liquid crystal model, Nonlinear Anal., 71 (2009), 539-549. doi: 10.1016/j.na.2008.10.092.

[8]

M. Doi and S. F. Edwards, The Theory of Polymer Dynamics, Oxford University Press, 1986.

[9]

Q. DuM. Li and C. Liu, Analysis of a phase field Navier-Stokes vesicle-fluid interaction model, Discrete Contin. Dyn. Syst. Ser. B, 8 (2007), 539-556. doi: 10.3934/dcdsb.2007.8.539.

[10]

M. EleuteriE. Rocca and G. Schimperna, On a non-isothermal diffuse interface model for two-phase flows of incompressible fluids, Discrete Contin. Dyn. Syst., 35 (2015), 2497-2522. doi: 10.3934/dcds.2015.35.2497.

[11]

M. EleuteriE. Rocca and G. Schimperna, Existence of solutions to a two-dimensional model for nonisothermal two-phase flows of incompressible fluids, Ann. Inst. H. Poincaré Anal. Non Linéaire, 33 (2016), 1431-1454. doi: 10.1016/j.anihpc.2015.05.006.

[12]

E. FeireislH. PetzeltováE. Rocca and G. Schimperna, Analysis of a phase-field model for two-phase compressible fluids, Math. Models Methods Appl. Sci., 20 (2010), 1129-1160. doi: 10.1142/S0218202510004544.

[13]

J. J. Feng, C. Liu, J. Shen and P. Yue, A energetic variational formulation with phase field methods for interfacial dynamics of complex fluids: advantages and challenges, Modeling of Soft Matter (M. T. Calderer, E. M. Terentjev eds. ), vol. IMA 141, Springer, New York, 2005, 1–26. doi: 10.1007/0-387-32153-5_1.

[14]

X. FengY. He and C. Liu, Analysis of finite element approximations of a phase field model for two-phase fluids, Math. Comp., 76 (2007), 539-571. doi: 10.1090/S0025-5718-06-01915-6.

[15]

S. Forest and M. Amestoy, Hypertemperature in thermoelastic solids, C. R. Mecanique, 336 (2008), 347-353. doi: 10.1016/j.crme.2008.01.007.

[16]

M. Frémond, Non-Smooth Thermomechanics, Springer-Verlag, Berlin, 2002. doi: 10.1007/978-3-662-04800-9.

[17]

A. Friedman, Partial Differential Equations, Dover Books on Mathematics, New York, 2008.

[18]

C. G. Gal and M. Grasselli, Asymptotic behavior of a Cahn-Hilliard-Navier- Stokes system in 2D, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010), 401-436. doi: 10.1016/j.anihpc.2009.11.013.

[19]

C. Gal and M. Grasselli, Longtime behavior for a model of homogeneous incompressible two-phase flows, Discrete Cont. Dyn. Sys., 28 (2010), 1-39. doi: 10.3934/dcds.2010.28.1.

[20]

C. Gal and M. Grasselli, Trajectory attractors for binary fluid mixtures in 3D, Chin. Ann. Math. Ser. B, 31 (2010), 655-678. doi: 10.1007/s11401-010-0603-6.

[21]

P. Grisvard, Elliptic Problems in Nonsmooth Domains, Classics in Applied Mathematics, Boston, 1985. doi: 10.1137/1.9781611972030.

[22]

P. Ireman and Q-S. Nguyen, Using the gradients of temperature and internal parameters in Continuum Thermodynamics, C. R. Mecanique, 332 (2004), 249-255. doi: 10.1016/j.crme.2004.01.012.

[23]

J. JiangY. Li and C. Liu, Two-phase incompressible flows with variable density: An energetic variational approach, Discrete Cont. Dyn. Sys., 37 (2017), 3243-3284. doi: 10.3934/dcds.2017138.

[24]

Y. LiS. Ding and M. Huang, Blow-up criterion for an incompressible Navier-Stokes/Allen-Cahn system with different densities, Discrete Cont. Dyn. Sys. Ser. B, 21 (2016), 1507-1523. doi: 10.3934/dcdsb.2016009.

[25]

F.-H. Lin and C. Liu, Nonparabolic dissipative systems modeling the flow of liquid crystals, Comm. Pure Appl. Math., 48 (1995), 501-537. doi: 10.1002/cpa.3160480503.

[26]

C. Liu and J. Shen, A phase field model for the mixture of two incompressible fluids and its approximation by a Fourier-spectral method, Phys. D., 179 (2003), 211-228. doi: 10.1016/S0167-2789(03)00030-7.

[27]

C. Liu and N. J. Walkington, An eulerian description of fluids containing visco-elastic particles, Arch. Ration. Mech. Anal, 159 (2001), 229-252. doi: 10.1007/s002050100158.

[28]

S. A. Lorca and J. L. Boldrini, The initial value problem for a generalized Boussinesq model, Nonlinear Anal., 36 (1999), 457-480. doi: 10.1016/S0362-546X(97)00635-4.

[29]

P. Marín-RubioG. Planas and J. Real, Asymptotic behaviour of a phase-field model with three coupled equations without uniqueness, J. Differential Equations, 246 (2009), 4632-4652. doi: 10.1016/j.jde.2009.01.021.

[30]

D. S. Mitrinović, J. E. Pečarić and A. M. Fink, Inequalities Involving Functions and Their Integrals and Derivatives, Mathematics and Its Applications 53, Springer-Science+Business Media, 1991. doi: 10.1007/978-94-011-3562-7.

[31]

L. Nirenberg, On elliptic partial differential equations, Ann. Scuola Norm. Super. Pisa Ser. 3, 13 (1959), 115-162. doi: 10.1007/978-3-642-10926-3_1.

[32]

J. Simon, Compacts sets in the space $ L^p(0, T;B)$, Ann. Mat. Pura Appl., 146 (1987), 65-96. doi: 10.1007/BF01762360.

[33]

P. SunC. Liu and J. Xu, Phase field model of thermo-induced Marangoni effects in the mixtures and its numerical simulations with mixed finite element method, Commun. Comput. Phys., 6 (2009), 1095-1117. doi: 10.4208/cicp.2009.v6.p1095.

[34]

Y. Sun and Z. Zhang, Global regularity for the initial-boundary value problem of 2-D Boussinesq system with variable viscosity and thermal diffusivity, J. Differential Equations, 255 (2013), 1069-1085. doi: 10.1016/j.jde.2013.04.032.

[35]

M. E. Taylor, Partial Differential Equations I, Applied Mathematical Sciences, 115, 2011. doi: 10.1007/978-1-4419-7055-8.

[36]

R. Temam, Navier-Stokes Equations, Studies in Mathematics and its Applications 2, North-Holland, Amsterdam, 1977.

[37]

H. Wu, Well-posedness of a diffuse-interface model for two-phase incompressible flows with thermo-induced Marangoni effect, European J. Appl. Math., 28 (2017), 380-434. doi: 10.1017/S0956792516000322.

[38]

H. Wu and X. Xu, Analysis of a diffuse-interface model for the binary viscous incompressible fluids with thermo-induced marangoni effects, Comunn. Math. Sci., 11 (2013), 603-633. doi: 10.4310/CMS.2013.v11.n2.a15.

[39]

X. XuL. Zhao and C. Liu, Axisymmetric solutions to coupled Navier-Stokes/Allen-Cahn equations, SIAM J. Math. Anal, 41 (2010), 2246-2282. doi: 10.1137/090754698.

[40]

X. YangJ. J. FengC. Liu and J. Shen, Numerical simulations of jet pinching-off and drop formation using an energetic variational phase-field method, J. Comput. Phys., 218 (2006), 417-428. doi: 10.1016/j.jcp.2006.02.021.

[1]

Yinghua Li, Shijin Ding, Mingxia Huang. Blow-up criterion for an incompressible Navier-Stokes/Allen-Cahn system with different densities. Discrete & Continuous Dynamical Systems - B, 2016, 21 (5) : 1507-1523. doi: 10.3934/dcdsb.2016009

[2]

Jun Yang, Xiaolin Yang. Clustered interior phase transition layers for an inhomogeneous Allen-Cahn equation in higher dimensional domains. Communications on Pure & Applied Analysis, 2013, 12 (1) : 303-340. doi: 10.3934/cpaa.2013.12.303

[3]

Ariane Piovezan Entringer, José Luiz Boldrini. A phase field $\alpha$-Navier-Stokes vesicle-fluid interaction model: Existence and uniqueness of solutions. Discrete & Continuous Dynamical Systems - B, 2015, 20 (2) : 397-422. doi: 10.3934/dcdsb.2015.20.397

[4]

Qiang Du, Manlin Li, Chun Liu. Analysis of a phase field Navier-Stokes vesicle-fluid interaction model. Discrete & Continuous Dynamical Systems - B, 2007, 8 (3) : 539-556. doi: 10.3934/dcdsb.2007.8.539

[5]

Yasuhito Miyamoto. Global bifurcation and stable two-phase separation for a phase field model in a disk. Discrete & Continuous Dynamical Systems - A, 2011, 30 (3) : 791-806. doi: 10.3934/dcds.2011.30.791

[6]

José Luiz Boldrini, Luís H. de Miranda, Gabriela Planas. On singular Navier-Stokes equations and irreversible phase transitions. Communications on Pure & Applied Analysis, 2012, 11 (5) : 2055-2078. doi: 10.3934/cpaa.2012.11.2055

[7]

Michela Eleuteri, Elisabetta Rocca, Giulio Schimperna. On a non-isothermal diffuse interface model for two-phase flows of incompressible fluids. Discrete & Continuous Dynamical Systems - A, 2015, 35 (6) : 2497-2522. doi: 10.3934/dcds.2015.35.2497

[8]

José Luiz Boldrini, Gabriela Planas. A tridimensional phase-field model with convection for phase change of an alloy. Discrete & Continuous Dynamical Systems - A, 2005, 13 (2) : 429-450. doi: 10.3934/dcds.2005.13.429

[9]

Paul H. Rabinowitz, Ed Stredulinsky. On a class of infinite transition solutions for an Allen-Cahn model equation. Discrete & Continuous Dynamical Systems - A, 2008, 21 (1) : 319-332. doi: 10.3934/dcds.2008.21.319

[10]

Theodore Tachim Medjo. A two-phase flow model with delays. Discrete & Continuous Dynamical Systems - B, 2017, 22 (9) : 3273-3294. doi: 10.3934/dcdsb.2017137

[11]

M. Hassan Farshbaf-Shaker, Harald Garcke. Thermodynamically consistent higher order phase field Navier-Stokes models with applications to biomembranes. Discrete & Continuous Dynamical Systems - S, 2011, 4 (2) : 371-389. doi: 10.3934/dcdss.2011.4.371

[12]

Changchun Liu, Hui Tang. Existence of periodic solution for a Cahn-Hilliard/Allen-Cahn equation in two space dimensions. Evolution Equations & Control Theory, 2017, 6 (2) : 219-237. doi: 10.3934/eect.2017012

[13]

Maurizio Grasselli, Hao Wu. Robust exponential attractors for the modified phase-field crystal equation. Discrete & Continuous Dynamical Systems - A, 2015, 35 (6) : 2539-2564. doi: 10.3934/dcds.2015.35.2539

[14]

Maciek D. Korzec, Hao Wu. Analysis and simulation for an isotropic phase-field model describing grain growth. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 2227-2246. doi: 10.3934/dcdsb.2014.19.2227

[15]

Zhenhua Zhang. Asymptotic behavior of solutions to the phase-field equations with neumann boundary conditions. Communications on Pure & Applied Analysis, 2005, 4 (3) : 683-693. doi: 10.3934/cpaa.2005.4.683

[16]

Gianni Gilardi. On an Allen-Cahn type integrodifferential equation. Discrete & Continuous Dynamical Systems - S, 2013, 6 (3) : 703-709. doi: 10.3934/dcdss.2013.6.703

[17]

Monica Conti, Stefania Gatti, Alain Miranville. A singular cahn-hilliard-oono phase-field system with hereditary memory. Discrete & Continuous Dynamical Systems - A, 2018, 38 (6) : 3033-3054. doi: 10.3934/dcds.2018132

[18]

Ken Shirakawa. Stability analysis for two dimensional Allen-Cahn equations associated with crystalline type energies. Conference Publications, 2009, 2009 (Special) : 697-707. doi: 10.3934/proc.2009.2009.697

[19]

T. Tachim Medjo. Averaging of an homogeneous two-phase flow model with oscillating external forces. Discrete & Continuous Dynamical Systems - A, 2012, 32 (10) : 3665-3690. doi: 10.3934/dcds.2012.32.3665

[20]

Ciprian G. Gal, Maurizio Grasselli. Longtime behavior for a model of homogeneous incompressible two-phase flows. Discrete & Continuous Dynamical Systems - A, 2010, 28 (1) : 1-39. doi: 10.3934/dcds.2010.28.1

2017 Impact Factor: 0.884

Article outline

[Back to Top]