• Previous Article
    Well-posedness for a non-isothermal flow of two viscous incompressible fluids
  • CPAA Home
  • This Issue
  • Next Article
    Uniqueness for Lp-viscosity solutions for uniformly parabolic Isaacs equations with measurable lower order terms
November 2018, 17(6): 2479-2493. doi: 10.3934/cpaa.2018118

Coupled systems of Hilfer fractional differential inclusions in banach spaces

1. 

Laboratory of Mathematics, Geometry, Analysis, Control and Applications, Tahar Moulay University of Saïda, P.O. Box 138, EN-Nasr, 20000 Saïda, Algeria

2. 

Laboratory of Mathematics, Djillali Liabes University of Sidi Bel-Abbès, P.O. Box 89, 22000, Algeria

3. 

Department of Mathematics, University of Tennessee at Chattanooga, Chattanooga, TN 37403, USA

* Corresponding author

Received  October 2017 Revised  January 2018 Published  June 2018

This paper deals with some existence results in Banach spaces for Hilfer and Hilfer-Hadamard fractional differential inclusions. The main tools used in the proofs are Mönch's fixed point theorem and the concept of a measure of noncompactness.

Citation: Saïd Abbas, Mouffak Benchohra, John R. Graef. Coupled systems of Hilfer fractional differential inclusions in banach spaces. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2479-2493. doi: 10.3934/cpaa.2018118
References:
[1]

S. Abbas and M. Benchohra, Stability results for fractional differential equations with not instantaneous impulses and state-dependent delay, Math. Slovaca, 67 (2017), 875-894.

[2]

S. AbbasM. Benchohra and M. A. Darwish, Upper and lower solutions method for partial discontinuous fractional differential inclusions with not instantaneous impulses, Discus. Math. Diff. Incl., Contr. Optim., 36 (2016), 155-179.

[3]

S. Abbas, M. Benchohra, J. R. Graef and J. E. Lazreg, Implicit Hadamard fractional differential equations with impulses under weak topologies, to appear.

[4] S. AbbasM. Benchohra and G.M. N'Guérékata, Topics in Fractional Differential Equations, Springer, New York, 2012.
[5] S. AbbasM. Benchohra and G.M. N'Guérékata, Advanced Fractional Differential and Integral Equations, Nova Science Publishers, New York, 2015.
[6] J. P. Aubin and A. Cellina, Differential Inclusions, Springer-Verlag, Berlin-Heidelberg, New York, 1984.
[7] J. P. Aubin and H. Frankowska, Set-Valued Analysis, Birkhäuser, Boston, 1990.
[8]

J. M. Ayerbee Toledano, T. Dominguez Benavides and G. Lopez Acedo, Measures of Noncompactness in Metric Fixed Point Theory, Operator Theory, Advances and Applications, vol 99, Birkhäuser, Basel, Boston, Berlin, 1997.

[9]

J. Bana and K. Goebel, Measures of Noncompactness in Banach Spaces, Dekker, New York, 1980.

[10]

M. BenchohraJ. HendersonS. K. Ntouyas and A. Ouahab, Existence results for functional differential equations of fractional order, J. Math. Anal. Appl., 338 (2008), 1340-1350.

[11]

M. BenchohraJ. Henderson and D. Seba, Measure of noncompactness and fractional differential equations in Banach spaces, Commun. Appl. Anal., 12 (2008), 419-428.

[12]

M. Benchohra and D. Seba, Integral equations of fractional order with multiple time delays in Banach spaces, Electron. J. Differential Equations, 2012 (2012), 8 pp.

[13] K. Deimling, Multivalued Differential Equations, De Gruyter, Berlin-New York, 1992.
[14]

K. M. Furati, M. D. Kassim. Non-existence of global solutions for a differential equation involving Hilfer fractional derivative, Electron. J. Differential Equations, 235 (2013), 10 pp.

[15]

K. M. FuratiM. D. Kassim and N. e-. Tatar, Existence and uniqueness for a problem involving Hilfer fractional derivative, Comput. Math. Appl., 64 (2012), 1616-1626.

[16]

J. R. GraefN. Guerraiche and S. Hamani, Boundary value problems for fractional differential inclusions with Hadamard type derivatives in Banach spaces, Studia Universitatis BabeşBolyai Mathematica, 62 (2017), 427-438.

[17]

J. R. GraefN. Guerraiche and S. Hamani, Initial value problems for fractional functional differential inclusions with Hadamard type derivatives in Banach spaces, Surv. Math. Appl., 13 (2018), 27-40.

[18]

H. P. Heinz, On the behaviour of measure of noncompacteness with respect of differentiation and integration of vector-valued function, Nonlinear. Anal., 7 (1983), 1351-1371.

[19] R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific, Singapore, 2000.
[20]

Sh. Hu and N. Papageorgiou, Handbook of Multivalued Analysis, Theory I, Kluwer, Dordrecht, 1997.

[21]

R. Kamocki and C. Obcz′nnski, On fractional Cauchy-type problems containing Hilfer's derivative, Electron. J. Qual. Theory Differ. Equ., 50 (2016), 1-12.

[22]

A. A. Kilbas, Hadamard-type fractional calculus, J. Korean Math. Soc., 38 (2001), 1191-1204.

[23] A. A. KilbasH. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier Science B.V., Amsterdam, 2006.
[24]

V. Lakshmikantham and J. Vasundhara Devi, Theory of fractional differential equations in a Banach space, Eur. J. Pure Appl. Math., 1 (2008), 38-45.

[25]

V. Lakshmikantham and A. S. Vatsala, Basic theory of fractional differential equations, Nonlinear Anal., 69 (2008), 2677-2682.

[26]

V. Lakshmikantham and A. S. Vatsala, General uniqueness and monotone iterative technique for fractional differential equations, Appl. Math. Lett., 21 (2008), 828-834.

[27]

A. Lasota and Z. Opial, An application of the Kakutani-Ky Fan theorem in the theory of ordinary differential equation, Bull. Accd. Pol. Sci., Ser. Sci. Math. Astronom. Phys., 13 (1965), 781-786.

[28]

D. O'Regan and R. Precup, Fixed point theorems for set-valued maps and existence principles for integral inclusions, J. Math. Anal. Appl., 245 (2000), 594-612.

[29]

M. D. Qassim, K. M. Furati and N. -e. Tatar, On a differential equation involving HilferHadamard fractional derivative, Abstr. Appl. Anal., Vol. 2012, Article ID 391062, 17 pages, 2012.

[30]

M. D. Qassim and N. -e. Tatar, Well-posedness and stability for a differential problem with Hilfer-Hadamard fractional derivative, Abstr. Appl. Anal., Vol. 2013, Article ID 605029, 12 pages, 2013.

[31]

S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives. Theory and Applications, Gordon and Breach, Amsterdam, 1987, Engl. Trans. from the Russian.

[32] V. E. Tarasov, Fractional Dynamics: Application of Fractional Calculus to Dynamics of Particles, Fields and Media, Springer, Heidelberg, Higher Education Press, Beijing, 2010.
[33]

Ž. TomovskiR. Hilfer and H. M. Srivastava, Fractional and operational calculus with generalized fractional derivative operators and Mittag-Leffler type functions, Integral Transforms Spec. Funct., 21 (2010), 797-814.

[34]

J.-R. Wang and Y. Zhang, Nonlocal initial value problems for differential equations with Hilfer fractional derivative, Appl. Math. Comput., 266 (2015), 850-859.

[35] Y. Zhou, Basic Theory of Fractional Differential Equations, World Scientific, Singapore, 2014.

show all references

References:
[1]

S. Abbas and M. Benchohra, Stability results for fractional differential equations with not instantaneous impulses and state-dependent delay, Math. Slovaca, 67 (2017), 875-894.

[2]

S. AbbasM. Benchohra and M. A. Darwish, Upper and lower solutions method for partial discontinuous fractional differential inclusions with not instantaneous impulses, Discus. Math. Diff. Incl., Contr. Optim., 36 (2016), 155-179.

[3]

S. Abbas, M. Benchohra, J. R. Graef and J. E. Lazreg, Implicit Hadamard fractional differential equations with impulses under weak topologies, to appear.

[4] S. AbbasM. Benchohra and G.M. N'Guérékata, Topics in Fractional Differential Equations, Springer, New York, 2012.
[5] S. AbbasM. Benchohra and G.M. N'Guérékata, Advanced Fractional Differential and Integral Equations, Nova Science Publishers, New York, 2015.
[6] J. P. Aubin and A. Cellina, Differential Inclusions, Springer-Verlag, Berlin-Heidelberg, New York, 1984.
[7] J. P. Aubin and H. Frankowska, Set-Valued Analysis, Birkhäuser, Boston, 1990.
[8]

J. M. Ayerbee Toledano, T. Dominguez Benavides and G. Lopez Acedo, Measures of Noncompactness in Metric Fixed Point Theory, Operator Theory, Advances and Applications, vol 99, Birkhäuser, Basel, Boston, Berlin, 1997.

[9]

J. Bana and K. Goebel, Measures of Noncompactness in Banach Spaces, Dekker, New York, 1980.

[10]

M. BenchohraJ. HendersonS. K. Ntouyas and A. Ouahab, Existence results for functional differential equations of fractional order, J. Math. Anal. Appl., 338 (2008), 1340-1350.

[11]

M. BenchohraJ. Henderson and D. Seba, Measure of noncompactness and fractional differential equations in Banach spaces, Commun. Appl. Anal., 12 (2008), 419-428.

[12]

M. Benchohra and D. Seba, Integral equations of fractional order with multiple time delays in Banach spaces, Electron. J. Differential Equations, 2012 (2012), 8 pp.

[13] K. Deimling, Multivalued Differential Equations, De Gruyter, Berlin-New York, 1992.
[14]

K. M. Furati, M. D. Kassim. Non-existence of global solutions for a differential equation involving Hilfer fractional derivative, Electron. J. Differential Equations, 235 (2013), 10 pp.

[15]

K. M. FuratiM. D. Kassim and N. e-. Tatar, Existence and uniqueness for a problem involving Hilfer fractional derivative, Comput. Math. Appl., 64 (2012), 1616-1626.

[16]

J. R. GraefN. Guerraiche and S. Hamani, Boundary value problems for fractional differential inclusions with Hadamard type derivatives in Banach spaces, Studia Universitatis BabeşBolyai Mathematica, 62 (2017), 427-438.

[17]

J. R. GraefN. Guerraiche and S. Hamani, Initial value problems for fractional functional differential inclusions with Hadamard type derivatives in Banach spaces, Surv. Math. Appl., 13 (2018), 27-40.

[18]

H. P. Heinz, On the behaviour of measure of noncompacteness with respect of differentiation and integration of vector-valued function, Nonlinear. Anal., 7 (1983), 1351-1371.

[19] R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific, Singapore, 2000.
[20]

Sh. Hu and N. Papageorgiou, Handbook of Multivalued Analysis, Theory I, Kluwer, Dordrecht, 1997.

[21]

R. Kamocki and C. Obcz′nnski, On fractional Cauchy-type problems containing Hilfer's derivative, Electron. J. Qual. Theory Differ. Equ., 50 (2016), 1-12.

[22]

A. A. Kilbas, Hadamard-type fractional calculus, J. Korean Math. Soc., 38 (2001), 1191-1204.

[23] A. A. KilbasH. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier Science B.V., Amsterdam, 2006.
[24]

V. Lakshmikantham and J. Vasundhara Devi, Theory of fractional differential equations in a Banach space, Eur. J. Pure Appl. Math., 1 (2008), 38-45.

[25]

V. Lakshmikantham and A. S. Vatsala, Basic theory of fractional differential equations, Nonlinear Anal., 69 (2008), 2677-2682.

[26]

V. Lakshmikantham and A. S. Vatsala, General uniqueness and monotone iterative technique for fractional differential equations, Appl. Math. Lett., 21 (2008), 828-834.

[27]

A. Lasota and Z. Opial, An application of the Kakutani-Ky Fan theorem in the theory of ordinary differential equation, Bull. Accd. Pol. Sci., Ser. Sci. Math. Astronom. Phys., 13 (1965), 781-786.

[28]

D. O'Regan and R. Precup, Fixed point theorems for set-valued maps and existence principles for integral inclusions, J. Math. Anal. Appl., 245 (2000), 594-612.

[29]

M. D. Qassim, K. M. Furati and N. -e. Tatar, On a differential equation involving HilferHadamard fractional derivative, Abstr. Appl. Anal., Vol. 2012, Article ID 391062, 17 pages, 2012.

[30]

M. D. Qassim and N. -e. Tatar, Well-posedness and stability for a differential problem with Hilfer-Hadamard fractional derivative, Abstr. Appl. Anal., Vol. 2013, Article ID 605029, 12 pages, 2013.

[31]

S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives. Theory and Applications, Gordon and Breach, Amsterdam, 1987, Engl. Trans. from the Russian.

[32] V. E. Tarasov, Fractional Dynamics: Application of Fractional Calculus to Dynamics of Particles, Fields and Media, Springer, Heidelberg, Higher Education Press, Beijing, 2010.
[33]

Ž. TomovskiR. Hilfer and H. M. Srivastava, Fractional and operational calculus with generalized fractional derivative operators and Mittag-Leffler type functions, Integral Transforms Spec. Funct., 21 (2010), 797-814.

[34]

J.-R. Wang and Y. Zhang, Nonlocal initial value problems for differential equations with Hilfer fractional derivative, Appl. Math. Comput., 266 (2015), 850-859.

[35] Y. Zhou, Basic Theory of Fractional Differential Equations, World Scientific, Singapore, 2014.
[1]

Chun Wang, Tian-Zhou Xu. Stability of the nonlinear fractional differential equations with the right-sided Riemann-Liouville fractional derivative. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 505-521. doi: 10.3934/dcdss.2017025

[2]

Dariusz Idczak, Rafał Kamocki. Existence of optimal solutions to lagrange problem for a fractional nonlinear control system with riemann-liouville derivative. Mathematical Control & Related Fields, 2017, 7 (3) : 449-464. doi: 10.3934/mcrf.2017016

[3]

Ilknur Koca. Numerical analysis of coupled fractional differential equations with Atangana-Baleanu fractional derivative. Discrete & Continuous Dynamical Systems - S, 2019, 12 (3) : 475-486. doi: 10.3934/dcdss.2019031

[4]

Fangfang Dong, Yunmei Chen. A fractional-order derivative based variational framework for image denoising. Inverse Problems & Imaging, 2016, 10 (1) : 27-50. doi: 10.3934/ipi.2016.10.27

[5]

Kolade M. Owolabi, Abdon Atangana. High-order solvers for space-fractional differential equations with Riesz derivative. Discrete & Continuous Dynamical Systems - S, 2019, 12 (3) : 567-590. doi: 10.3934/dcdss.2019037

[6]

Christina A. Hollon, Jeffrey T. Neugebauer. Positive solutions of a fractional boundary value problem with a fractional derivative boundary condition. Conference Publications, 2015, 2015 (special) : 615-620. doi: 10.3934/proc.2015.0615

[7]

Abbes Benaissa, Abderrahmane Kasmi. Well-posedeness and energy decay of solutions to a bresse system with a boundary dissipation of fractional derivative type. Discrete & Continuous Dynamical Systems - B, 2018, 23 (10) : 4361-4395. doi: 10.3934/dcdsb.2018168

[8]

Jingbo Dou, Huaiyu Zhou. Liouville theorems for fractional Hénon equation and system on $\mathbb{R}^n$. Communications on Pure & Applied Analysis, 2015, 14 (5) : 1915-1927. doi: 10.3934/cpaa.2015.14.1915

[9]

Imen Manoubi. Theoretical and numerical analysis of the decay rate of solutions to a water wave model with a nonlocal viscous dispersive term with Riemann-Liouville half derivative. Discrete & Continuous Dynamical Systems - B, 2014, 19 (9) : 2837-2863. doi: 10.3934/dcdsb.2014.19.2837

[10]

Maoding Zhen, Jinchun He, Haoyun Xu. Critical system involving fractional Laplacian. Communications on Pure & Applied Analysis, 2019, 18 (1) : 237-253. doi: 10.3934/cpaa.2019013

[11]

Zeng-bao Wu, Yun-zhi Zou, Nan-jing Huang. A new class of global fractional-order projective dynamical system with an application. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-17. doi: 10.3934/jimo.2018139

[12]

Shaoming Guo. Oscillatory integrals related to Carleson's theorem: fractional monomials. Communications on Pure & Applied Analysis, 2016, 15 (3) : 929-946. doi: 10.3934/cpaa.2016.15.929

[13]

Fausto Ferrari. Mean value properties of fractional second order operators. Communications on Pure & Applied Analysis, 2015, 14 (1) : 83-106. doi: 10.3934/cpaa.2015.14.83

[14]

Therese Mur, Hernan R. Henriquez. Relative controllability of linear systems of fractional order with delay. Mathematical Control & Related Fields, 2015, 5 (4) : 845-858. doi: 10.3934/mcrf.2015.5.845

[15]

Dina Tavares, Ricardo Almeida, Delfim F. M. Torres. Fractional Herglotz variational problems of variable order. Discrete & Continuous Dynamical Systems - S, 2018, 11 (1) : 143-154. doi: 10.3934/dcdss.2018009

[16]

Yaozhong Hu, Yanghui Liu, David Nualart. Taylor schemes for rough differential equations and fractional diffusions. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3115-3162. doi: 10.3934/dcdsb.2016090

[17]

Nguyen Dinh Cong, Doan Thai Son, Stefan Siegmund, Hoang The Tuan. An instability theorem for nonlinear fractional differential systems. Discrete & Continuous Dynamical Systems - B, 2017, 22 (8) : 3079-3090. doi: 10.3934/dcdsb.2017164

[18]

Daria Bugajewska, Mirosława Zima. On positive solutions of nonlinear fractional differential equations. Conference Publications, 2003, 2003 (Special) : 141-146. doi: 10.3934/proc.2003.2003.141

[19]

Mahmoud M. El-Borai. On some fractional differential equations in the Hilbert space. Conference Publications, 2005, 2005 (Special) : 233-240. doi: 10.3934/proc.2005.2005.233

[20]

Roberto Garrappa, Eleonora Messina, Antonia Vecchio. Effect of perturbation in the numerical solution of fractional differential equations. Discrete & Continuous Dynamical Systems - B, 2018, 23 (7) : 2679-2694. doi: 10.3934/dcdsb.2017188

2017 Impact Factor: 0.884

Metrics

  • PDF downloads (68)
  • HTML views (110)
  • Cited by (0)

Other articles
by authors

[Back to Top]