
-
Previous Article
Shape optimization approach for solving the Bernoulli problem by tracking the Neumann data: A Lagrangian formulation
- CPAA Home
- This Issue
-
Next Article
On the isoperimetric problem with perimeter density $r^p$
On a predator prey model with nonlinear harvesting and distributed delay
1. | Departamento de Ecuaciones Diferenciales y Análisis Numérico, Universidad de Sevilla, c/ Tarfia s/n, 41012 Sevilla, Spain |
2. | Department of Engineering, Niccolò Cusano University, via Don Carlo Gnocchi 3, 00166 Roma, Italy |
3. | Department of Management, Università Politecnica delle Marche, Piazza Martelli 8, 60121 Ancona, Italy |
A predator prey model with nonlinear harvesting (Holling type-Ⅱ) with both constant and distributed delay is considered. The boundeness of solutions is proved and some sufficient conditions ensuring the persistence of the two populations are established. Also, a detailed study of the bifurcation of positive equilibria is provided. All the results are illustrated by some numerical simulations.
References:
[1] |
L. Chang, G. Q. Sun, Z. Jin and Z. Wang,
Rich dynamics in a spatial predator-prey model with delay, Appl. Math. Comput, 256(C) (2015), 540-550.
|
[2] |
T. Das, R. N. Mukherjee and K. S. Chaudhari, Bioeconomic harvesting of a prey-predator fishery, J. Biol. Dyn., 3 (2009), 447-462. |
[3] |
J. Dieudonné, Foundations of Modern Analysis, Academic Press, New York, 1960. |
[4] |
R. P. Gupta and P. Chandra,
Bifurcation analysis of modified Leslie-Gower predator-prey model with Michaelis-Menten type prey harvesting, J. Math. Anal. Appl., 398 (2013), 278-295.
|
[5] |
R. P. Gupta, P. Chandra and M. Banerjee,
Dynamical complexity of a prey-predator model with nonlinear predator harvesting, Discrete and continuous dynamical systems series B, 20 (2015), 423-443.
|
[6] |
J. K. Hale, Theory of Functional Differential Equations, Springer-Verlag, New York, 1977. |
[7] |
S. V. Krishna, P. D. N. Srinivasu and B. Prasad Kaymakcalan, Conservation of an ecosystem through optimal taxation, Bull. Math. Biol., 60 (1998), 569-584. |
[8] |
J. Liu and L. Zhang,
Bifurcation analysis in a prey-predator model with nonlinear predator harvesting, Journal of the Franklin Institute, 353 (2016), 4701-4714.
|
[9] |
N. MacDonald, Time Lags in Biological Systems, Springer, New York, 1978. |
[10] |
T. Pradhan and K. S. Chaudhuri,
Bioeconomic harvesting of a schooling fish species: A dynamic reaction model, Korean J. Comput. Appl. Math., 6 (1999), 127-141.
|
[11] |
H. L. Smith and H. R. Thieme, Dynamical Systems and Population Persistence, AMS, Graduate Studies in Mathematics Volume: 118 (2011), 405 pp. |
[12] |
H. L. Smith and X. Q. Zhao,
Global asymptotic stability of traveling waves in delayed reactiondiffusion equations, SIAM J. Math. Anal., 31 (2000), 514-534.
|
[13] |
Y. Song, Y. Peng and M. Han,
Travelling wave fronts in the diffusive single species model with Allee effect and distributed delay, Appl. Math. Comput., 152 (2004), 483-497.
|
[14] |
P. D. N. Srinivasu,
Bioeconomics of a renewable resource in presence of a predator, Nonlin. Anal. Real World Appl., 2 (2001), 497-506.
|
[15] |
J. Wu and X. Zou,
Traveling wave fronts of reaction-diffusion systems with delay, J.Dyn.Diff.Equ., 13 (2001), 651-687.
|
[16] |
R. Xu and Z. Ma,
An HBV model with diffusion and time delay, J. Theor. Biol., 257 (2009), 499-509.
|
show all references
References:
[1] |
L. Chang, G. Q. Sun, Z. Jin and Z. Wang,
Rich dynamics in a spatial predator-prey model with delay, Appl. Math. Comput, 256(C) (2015), 540-550.
|
[2] |
T. Das, R. N. Mukherjee and K. S. Chaudhari, Bioeconomic harvesting of a prey-predator fishery, J. Biol. Dyn., 3 (2009), 447-462. |
[3] |
J. Dieudonné, Foundations of Modern Analysis, Academic Press, New York, 1960. |
[4] |
R. P. Gupta and P. Chandra,
Bifurcation analysis of modified Leslie-Gower predator-prey model with Michaelis-Menten type prey harvesting, J. Math. Anal. Appl., 398 (2013), 278-295.
|
[5] |
R. P. Gupta, P. Chandra and M. Banerjee,
Dynamical complexity of a prey-predator model with nonlinear predator harvesting, Discrete and continuous dynamical systems series B, 20 (2015), 423-443.
|
[6] |
J. K. Hale, Theory of Functional Differential Equations, Springer-Verlag, New York, 1977. |
[7] |
S. V. Krishna, P. D. N. Srinivasu and B. Prasad Kaymakcalan, Conservation of an ecosystem through optimal taxation, Bull. Math. Biol., 60 (1998), 569-584. |
[8] |
J. Liu and L. Zhang,
Bifurcation analysis in a prey-predator model with nonlinear predator harvesting, Journal of the Franklin Institute, 353 (2016), 4701-4714.
|
[9] |
N. MacDonald, Time Lags in Biological Systems, Springer, New York, 1978. |
[10] |
T. Pradhan and K. S. Chaudhuri,
Bioeconomic harvesting of a schooling fish species: A dynamic reaction model, Korean J. Comput. Appl. Math., 6 (1999), 127-141.
|
[11] |
H. L. Smith and H. R. Thieme, Dynamical Systems and Population Persistence, AMS, Graduate Studies in Mathematics Volume: 118 (2011), 405 pp. |
[12] |
H. L. Smith and X. Q. Zhao,
Global asymptotic stability of traveling waves in delayed reactiondiffusion equations, SIAM J. Math. Anal., 31 (2000), 514-534.
|
[13] |
Y. Song, Y. Peng and M. Han,
Travelling wave fronts in the diffusive single species model with Allee effect and distributed delay, Appl. Math. Comput., 152 (2004), 483-497.
|
[14] |
P. D. N. Srinivasu,
Bioeconomics of a renewable resource in presence of a predator, Nonlin. Anal. Real World Appl., 2 (2001), 497-506.
|
[15] |
J. Wu and X. Zou,
Traveling wave fronts of reaction-diffusion systems with delay, J.Dyn.Diff.Equ., 13 (2001), 651-687.
|
[16] |
R. Xu and Z. Ma,
An HBV model with diffusion and time delay, J. Theor. Biol., 257 (2009), 499-509.
|










[1] |
Alfonso Ruiz-Herrera. Chaos in delay differential equations with applications in population dynamics. Discrete & Continuous Dynamical Systems - A, 2013, 33 (4) : 1633-1644. doi: 10.3934/dcds.2013.33.1633 |
[2] |
Hui Wan, Huaiping Zhu. A new model with delay for mosquito population dynamics. Mathematical Biosciences & Engineering, 2014, 11 (6) : 1395-1410. doi: 10.3934/mbe.2014.11.1395 |
[3] |
Robert Skiba, Nils Waterstraat. The index bundle and multiparameter bifurcation for discrete dynamical systems. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5603-5629. doi: 10.3934/dcds.2017243 |
[4] |
Zhihua Liu, Hui Tang, Pierre Magal. Hopf bifurcation for a spatially and age structured population dynamics model. Discrete & Continuous Dynamical Systems - B, 2015, 20 (6) : 1735-1757. doi: 10.3934/dcdsb.2015.20.1735 |
[5] |
Cecilia Cavaterra, M. Grasselli. Robust exponential attractors for population dynamics models with infinite time delay. Discrete & Continuous Dynamical Systems - B, 2006, 6 (5) : 1051-1076. doi: 10.3934/dcdsb.2006.6.1051 |
[6] |
Suqi Ma, Qishao Lu, Shuli Mei. Dynamics of a logistic population model with maturation delay and nonlinear birth rate. Discrete & Continuous Dynamical Systems - B, 2005, 5 (3) : 735-752. doi: 10.3934/dcdsb.2005.5.735 |
[7] |
Gang Huang, Yasuhiro Takeuchi, Rinko Miyazaki. Stability conditions for a class of delay differential equations in single species population dynamics. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2451-2464. doi: 10.3934/dcdsb.2012.17.2451 |
[8] |
Tomas Alarcon, Philipp Getto, Anna Marciniak-Czochra, Maria dM Vivanco. A model for stem cell population dynamics with regulated maturation delay. Conference Publications, 2011, 2011 (Special) : 32-43. doi: 10.3934/proc.2011.2011.32 |
[9] |
MirosŁaw Lachowicz, Tatiana Ryabukha. Equilibrium solutions for microscopic stochastic systems in population dynamics. Mathematical Biosciences & Engineering, 2013, 10 (3) : 777-786. doi: 10.3934/mbe.2013.10.777 |
[10] |
Bedr'Eddine Ainseba. Age-dependent population dynamics diffusive systems. Discrete & Continuous Dynamical Systems - B, 2004, 4 (4) : 1233-1247. doi: 10.3934/dcdsb.2004.4.1233 |
[11] |
Meng Liu, Ke Wang. Population dynamical behavior of Lotka-Volterra cooperative systems with random perturbations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (6) : 2495-2522. doi: 10.3934/dcds.2013.33.2495 |
[12] |
Meng Liu, Chuanzhi Bai, Yi Jin. Population dynamical behavior of a two-predator one-prey stochastic model with time delay. Discrete & Continuous Dynamical Systems - A, 2017, 37 (5) : 2513-2538. doi: 10.3934/dcds.2017108 |
[13] |
Julián López-Gómez, Marcela Molina-Meyer, Andrea Tellini. Intricate bifurcation diagrams for a class of one-dimensional superlinear indefinite problems of interest in population dynamics. Conference Publications, 2013, 2013 (special) : 515-524. doi: 10.3934/proc.2013.2013.515 |
[14] |
Tomás Caraballo, Francisco Morillas, José Valero. On differential equations with delay in Banach spaces and attractors for retarded lattice dynamical systems. Discrete & Continuous Dynamical Systems - A, 2014, 34 (1) : 51-77. doi: 10.3934/dcds.2014.34.51 |
[15] |
Silviu-Iulian Niculescu, Peter S. Kim, Keqin Gu, Peter P. Lee, Doron Levy. Stability crossing boundaries of delay systems modeling immune dynamics in leukemia. Discrete & Continuous Dynamical Systems - B, 2010, 13 (1) : 129-156. doi: 10.3934/dcdsb.2010.13.129 |
[16] |
Mohammadreza Molaei. Hyperbolic dynamics of discrete dynamical systems on pseudo-riemannian manifolds. Electronic Research Announcements, 2018, 25: 8-15. doi: 10.3934/era.2018.25.002 |
[17] |
Bixiang Wang. Stochastic bifurcation of pathwise random almost periodic and almost automorphic solutions for random dynamical systems. Discrete & Continuous Dynamical Systems - A, 2015, 35 (8) : 3745-3769. doi: 10.3934/dcds.2015.35.3745 |
[18] |
J. C. Robinson. A topological time-delay embedding theorem for infinite-dimensional cocycle dynamical systems. Discrete & Continuous Dynamical Systems - B, 2008, 9 (3&4, May) : 731-741. doi: 10.3934/dcdsb.2008.9.731 |
[19] |
Yilei Tang. Global dynamics and bifurcation of planar piecewise smooth quadratic quasi-homogeneous differential systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 2029-2046. doi: 10.3934/dcds.2018082 |
[20] |
Erika T. Camacho, Christopher M. Kribs-Zaleta, Stephen Wirkus. Metering effects in population systems. Mathematical Biosciences & Engineering, 2013, 10 (5&6) : 1365-1379. doi: 10.3934/mbe.2013.10.1365 |
2017 Impact Factor: 0.884
Tools
Metrics
Other articles
by authors
[Back to Top]