• Previous Article
    Existence of weak solutions for a diffuse interface model for two-phase flow with surfactants
  • CPAA Home
  • This Issue
  • Next Article
    Existence and a general decay results for a viscoelastic plate equation with a logarithmic nonlinearity
January  2019, 18(1): 181-193. doi: 10.3934/cpaa.2019010

Kirchhoff type equations with strong singularities

Department of Mathematics, University of Chinese Academy of Sciences, Beijing 100049, China

* Corresponding author

Received  October 2017 Revised  January 2018 Published  August 2018

Fund Project: The authors are supported by NSFC grants 11571339 and 11771468.

An optimal condition is given for the existence of positive solutions of nonlinear Kirchhoff PDE with strong singularities. A byproduct is that $-2$ is no longer the critical position for the existence of positive solutions of PDE's with singular potentials and negative powers of the form: $ - |x{|^\alpha }\Delta u = {u^{{\rm{ - }}\gamma }}$ in $Ω$, $u = 0$ on $\partial \Omega $, where $\Omega$ is a bounded domain of ${\mathbb{R}}^{N}$ containing 0, with $N \ge 3$, $\alpha \in \left( {0, N} \right)$ and $ - \gamma \in \left( { - 3, - 1} \right)$.

Citation: Yijing Sun, Yuxin Tan. Kirchhoff type equations with strong singularities. Communications on Pure & Applied Analysis, 2019, 18 (1) : 181-193. doi: 10.3934/cpaa.2019010
References:
[1]

R. P. Agarwal and D. O'Regan, Singular Differential and Integral Equations with Applications, Springer, New York, 2003. doi: 10.1007/978-94-017-3004-4.  Google Scholar

[2]

C. AlvesF. Correa and J. Goncalves, Existence of solutions for some classes of singular Hamiltonian systems, Advanced Nonlinear Studies, 5 (2005), 265-278.  doi: 10.1515/ans-2005-0206.  Google Scholar

[3]

C. Alves and M. Montenegro, Positive solutions to a singular Neumann problem, J. Math. Anal. Appl., 352 (2009), 112-119.  doi: 10.1016/j.jmaa.2008.02.026.  Google Scholar

[4]

L. Bai and G. Zhang, Nontrivial solutions for a nonlinear discrete elliptic equation with periodic boundary conditions, Appl. Math. Comput., 210 (2009), 321-333.  doi: 10.1016/j.amc.2008.12.024.  Google Scholar

[5]

L. Boccardo and L. Orsina, Semilinear elliptic equations with singular nonlinearities, Calc. Var., 37 (2010), 636-380.  doi: 10.1007/s00526-009-0266-x.  Google Scholar

[6]

P. Caldiroli and R. Musina, On a class of two-dimensional singular elliptic problems, Proc. Roy. Soc. Edinburgh Sect. A, 131 (2001), 479-497.  doi: 10.1017/S0308210500000974.  Google Scholar

[7]

J. Chabrowski, On the Neumann problem with singular and superlinear nonlinearities, Comm. in Applied Analysis, 13 (2009), 327-340.   Google Scholar

[8]

M. ChhetriS. Raynor and S. Rabinson, On the existence of multiple positive solutions to some superlinear systems, Proc. Roy. Soc. Edinburgh Sect. A, 142 (2012), 39-59.  doi: 10.1017/S0308210510000582.  Google Scholar

[9]

M. Coclite and G. Palmieri, On a singular nonlinear Dirichlet problem, Comm. Partial Differential Equations, 14 (1989), 1315-1327.  doi: 10.1080/03605308908820656.  Google Scholar

[10]

M. CrandallP. Rabinowitz and L. Tartar, On a Dirichlet problem with a singular nonlinearity, Comm. Partial Differential Equations, 2 (1977), 2615-2622.  doi: 10.1080/03605307708820029.  Google Scholar

[11]

J. I. DiazJ. Hernández and J. M. Rakotoson, On very weak positive solutions to some semilinear elliptic problems with simultaneous singular nonlinear and spatial dependence terms, Milan J. Math., 79 (2011), 233-245.  doi: 10.1007/s00032-011-0151-x.  Google Scholar

[12]

J. I. DiazJ. Morel and L. Oswald, An elliptic equation with singular nonlinearity, Comm. in Partial Differential Equations, 12 (1987), 1333-1344.  doi: 10.1080/03605308708820531.  Google Scholar

[13]

I. Ekeland, On the variational principle, J. Math. Anal. Appl., 47 (1974), 324-353.  doi: 10.1016/0022-247X(74)90025-0.  Google Scholar

[14]

L. Gasinski and N. Papageorgiou, Nonlinear elliptic equations with singular terms and combined nonlinearities, Annales Henri Poincare, 13 (2012), 481-512.  doi: 10.1007/s00023-011-0129-9.  Google Scholar

[15]

M. Ghergu and V. Radulescu, Ground state solutions for the singular Lane-Emden-Fowler equation with sublinear convection term, J. Math. Anal. Appl., 333 (2007), 265-273.  doi: 10.1016/j.jmaa.2006.09.074.  Google Scholar

[16]

J. GiacomoniS. Prashanth and K. Sreenadh, Uniqueness and multiplicity results for N-Laplace equation with critical and singular nonlinearity in a ball, Asymptotic Analysis, 61 (2009), 195-227.   Google Scholar

[17]

J. Giacomoni and K. Saoudi, Multiplicity of positive solutions for a singular and critical problem, Nonlinear Anal., 71 (2009), 4060-4077.  doi: 10.1016/j.na.2009.02.087.  Google Scholar

[18]

J. GiacomoniI. Schindler and P. Takac, Sobolev versus Holder local minimizers and existence of multiple solutions for a singular quasilinear equation, Annali Della Scuola Norm. Sup. Pisa, 6 (2007), 117-158.   Google Scholar

[19]

J. Giacomoni and K. Sreenadh, Multiplicity results for a singular and quasilinear equation, Discrete Continuous Dynamical Systems, (2007), 429-435.   Google Scholar

[20]

J. GoncalvesA. Melo and C. Santos, On existence of L-infinity-gound states for singular elliptic equations in the presence of a strongly nonlinear term, Advanced Nonlinear Studies, 7 (2007), 475-490.  doi: 10.1515/ans-2007-0308.  Google Scholar

[21]

J. Goncalves and C. Santos, Singular ellitptic problems: Existence, non-existence and boundary behavior, Nonlinear Anal., 66 (2007), 2078-2090.  doi: 10.1016/j.na.2006.03.003.  Google Scholar

[22]

C. F. Gui and F. H. Lin, Regularity of an elliptic problem with a singular nonlinearity, Proc. Roy. Soc. Edinburgh, 123A (1993), 1021-1029.  doi: 10.1017/S030821050002970X.  Google Scholar

[23]

D. Hai, On an asymptotically linear singular boundary value problems, Topological Methods in Nonlinear Analysis, 39 (2012), 83-92.   Google Scholar

[24]

J. HernándezF. J. Mancebo and J. M. Vega, Positive solutions for singular nonlinear elliptic equations, Proc. Roy. Soc. Edinburgh, 137A (2007), 41-62.  doi: 10.1017/S030821050500065X.  Google Scholar

[25]

J. Hernández and F. J. Mancebo, Singular elliptic and parabolic equations, in Handbook of Differential Equations: Stationary Partial Differential Equations, Vol. 3, Elsevier, 317-400, (2006) Google Scholar

[26]

N. HiranoC. Saccon and N. Shioji, Brezis-Nirenberg type theorems and multiplicity of positive solutions for a singular elliptic problem, J. Differential Equations, 245 (2008), 1997-2037.  doi: 10.1016/j.jde.2008.06.020.  Google Scholar

[27]

G. Kirchhoff, Mechanik, Teubner, Leipzig, 1883. Google Scholar

[28]

S. Kyritsi and N. Papageorgiou, Pairs of positive solutions for singular p-Laplacian equations with a p-superlinear potential, Nonlinear Anal., 73 (2010), 1136-1142.  doi: 10.1016/j.na.2010.04.019.  Google Scholar

[29]

A. V. Lair and A. W. Shaker, Classical and weak solutions of a singular semilinear elliptic problem, J. Math. Anal. Appl., 211 (1997), 371-385.  doi: 10.1006/jmaa.1997.5470.  Google Scholar

[30]

A. C. Lazer and P. J. McKenna, On a singular nonlinear elliptic boundary value problem, Proc. Amer. Math. Soc., 111 (1991), 721-730.  doi: 10.2307/2048410.  Google Scholar

[31]

J. F. LiaoX. F. KeC. Y. Lei and C. L. Tang, A uniqueness result for Kirchhoff type problems with singularity, Appl.Math.Lett., 59 (2016), 24-30.  doi: 10.1016/j.aml.2016.03.001.  Google Scholar

[32]

J. L. Lions, On some questions in boundary value problems of mathematical physics, North-Holland Math. Stud, Vol. 30, North-Holland, Amsterdam, 1978, pp. 284-346.  Google Scholar

[33]

N. Loc and K. Schmitt, Boundary value problems for singular elliptic equations, Rocky Mountain Journal of Mathematics, 41 (2011), 555-572.  doi: 10.1216/RMJ-2011-41-2-555.  Google Scholar

[34]

M. Montenegro and E. Silva, Two solutions for s singular elliptic equation by variational methods, Annali Della Scuola Normale Superiore Di Pisa, 11 (2012), 143-165.   Google Scholar

[35]

K. Perera and Z. Zhang, Nontrivial solutions of Kirchhoff-type problems via the Yang index, J. Differential Equations, 221 (2006), 246-255.  doi: 10.1016/j.jde.2005.03.006.  Google Scholar

[36]

J. P. Shi and M. X. Yao, On a singular semilinear elliptic problem, Proc. Roy. Soc. Edinburgh, 128A (1998), 1389-1401.  doi: 10.1017/S0308210500027384.  Google Scholar

[37]

L. Xing and S. Yijing, Multiple positive solutions for Kirchhoff type problems with singularity, Comm. Pure Appl. Anal., 12 (2013), 721-733.   Google Scholar

[38]

S. Yijing, Compatibility phenomena in singular problems, Proc. Roy. Soc. Edinburgh Sect. A, 143 (2013), 1321-1330.  doi: 10.1017/S030821051100117X.  Google Scholar

[39]

S. Yijing and Z. Duanzhi, The role of the power 3 for elliptic equations with negative exponents, Calc.Var. Partial Differential Equations, 49 (2014), 909-922.  doi: 10.1007/s00526-013-0604-x.  Google Scholar

[40]

S. Yijing and W. Shaoping, An exact estimate result for a class of singular equations with critical exponents, J. Funct. Anal., 260 (2011), 1257-1284.  doi: 10.1016/j.jfa.2010.11.018.  Google Scholar

[41]

S. Yijing and L. Yiming, The planar Orlicz Minkowski problem in the L1-sense, Adv. Math., 281 (2015), 1364-1383.  doi: 10.1016/j.aim.2015.03.032.  Google Scholar

[42]

Z. Zhang and J. Cheng, Existence and optimal estimates of solutions for singular nonlinear Dirichlet problems, Nonlinear Anal., 57 (2004), 473-484.  doi: 10.1016/j.na.2004.02.025.  Google Scholar

[43]

Z. Zhang and K. Perera, Sign changing solutions of Kirchhoff type problems via invariant sets of descent flow, J. Math. Anal. Appl., 317 (2006), 456-463.  doi: 10.1016/j.jmaa.2005.06.102.  Google Scholar

show all references

References:
[1]

R. P. Agarwal and D. O'Regan, Singular Differential and Integral Equations with Applications, Springer, New York, 2003. doi: 10.1007/978-94-017-3004-4.  Google Scholar

[2]

C. AlvesF. Correa and J. Goncalves, Existence of solutions for some classes of singular Hamiltonian systems, Advanced Nonlinear Studies, 5 (2005), 265-278.  doi: 10.1515/ans-2005-0206.  Google Scholar

[3]

C. Alves and M. Montenegro, Positive solutions to a singular Neumann problem, J. Math. Anal. Appl., 352 (2009), 112-119.  doi: 10.1016/j.jmaa.2008.02.026.  Google Scholar

[4]

L. Bai and G. Zhang, Nontrivial solutions for a nonlinear discrete elliptic equation with periodic boundary conditions, Appl. Math. Comput., 210 (2009), 321-333.  doi: 10.1016/j.amc.2008.12.024.  Google Scholar

[5]

L. Boccardo and L. Orsina, Semilinear elliptic equations with singular nonlinearities, Calc. Var., 37 (2010), 636-380.  doi: 10.1007/s00526-009-0266-x.  Google Scholar

[6]

P. Caldiroli and R. Musina, On a class of two-dimensional singular elliptic problems, Proc. Roy. Soc. Edinburgh Sect. A, 131 (2001), 479-497.  doi: 10.1017/S0308210500000974.  Google Scholar

[7]

J. Chabrowski, On the Neumann problem with singular and superlinear nonlinearities, Comm. in Applied Analysis, 13 (2009), 327-340.   Google Scholar

[8]

M. ChhetriS. Raynor and S. Rabinson, On the existence of multiple positive solutions to some superlinear systems, Proc. Roy. Soc. Edinburgh Sect. A, 142 (2012), 39-59.  doi: 10.1017/S0308210510000582.  Google Scholar

[9]

M. Coclite and G. Palmieri, On a singular nonlinear Dirichlet problem, Comm. Partial Differential Equations, 14 (1989), 1315-1327.  doi: 10.1080/03605308908820656.  Google Scholar

[10]

M. CrandallP. Rabinowitz and L. Tartar, On a Dirichlet problem with a singular nonlinearity, Comm. Partial Differential Equations, 2 (1977), 2615-2622.  doi: 10.1080/03605307708820029.  Google Scholar

[11]

J. I. DiazJ. Hernández and J. M. Rakotoson, On very weak positive solutions to some semilinear elliptic problems with simultaneous singular nonlinear and spatial dependence terms, Milan J. Math., 79 (2011), 233-245.  doi: 10.1007/s00032-011-0151-x.  Google Scholar

[12]

J. I. DiazJ. Morel and L. Oswald, An elliptic equation with singular nonlinearity, Comm. in Partial Differential Equations, 12 (1987), 1333-1344.  doi: 10.1080/03605308708820531.  Google Scholar

[13]

I. Ekeland, On the variational principle, J. Math. Anal. Appl., 47 (1974), 324-353.  doi: 10.1016/0022-247X(74)90025-0.  Google Scholar

[14]

L. Gasinski and N. Papageorgiou, Nonlinear elliptic equations with singular terms and combined nonlinearities, Annales Henri Poincare, 13 (2012), 481-512.  doi: 10.1007/s00023-011-0129-9.  Google Scholar

[15]

M. Ghergu and V. Radulescu, Ground state solutions for the singular Lane-Emden-Fowler equation with sublinear convection term, J. Math. Anal. Appl., 333 (2007), 265-273.  doi: 10.1016/j.jmaa.2006.09.074.  Google Scholar

[16]

J. GiacomoniS. Prashanth and K. Sreenadh, Uniqueness and multiplicity results for N-Laplace equation with critical and singular nonlinearity in a ball, Asymptotic Analysis, 61 (2009), 195-227.   Google Scholar

[17]

J. Giacomoni and K. Saoudi, Multiplicity of positive solutions for a singular and critical problem, Nonlinear Anal., 71 (2009), 4060-4077.  doi: 10.1016/j.na.2009.02.087.  Google Scholar

[18]

J. GiacomoniI. Schindler and P. Takac, Sobolev versus Holder local minimizers and existence of multiple solutions for a singular quasilinear equation, Annali Della Scuola Norm. Sup. Pisa, 6 (2007), 117-158.   Google Scholar

[19]

J. Giacomoni and K. Sreenadh, Multiplicity results for a singular and quasilinear equation, Discrete Continuous Dynamical Systems, (2007), 429-435.   Google Scholar

[20]

J. GoncalvesA. Melo and C. Santos, On existence of L-infinity-gound states for singular elliptic equations in the presence of a strongly nonlinear term, Advanced Nonlinear Studies, 7 (2007), 475-490.  doi: 10.1515/ans-2007-0308.  Google Scholar

[21]

J. Goncalves and C. Santos, Singular ellitptic problems: Existence, non-existence and boundary behavior, Nonlinear Anal., 66 (2007), 2078-2090.  doi: 10.1016/j.na.2006.03.003.  Google Scholar

[22]

C. F. Gui and F. H. Lin, Regularity of an elliptic problem with a singular nonlinearity, Proc. Roy. Soc. Edinburgh, 123A (1993), 1021-1029.  doi: 10.1017/S030821050002970X.  Google Scholar

[23]

D. Hai, On an asymptotically linear singular boundary value problems, Topological Methods in Nonlinear Analysis, 39 (2012), 83-92.   Google Scholar

[24]

J. HernándezF. J. Mancebo and J. M. Vega, Positive solutions for singular nonlinear elliptic equations, Proc. Roy. Soc. Edinburgh, 137A (2007), 41-62.  doi: 10.1017/S030821050500065X.  Google Scholar

[25]

J. Hernández and F. J. Mancebo, Singular elliptic and parabolic equations, in Handbook of Differential Equations: Stationary Partial Differential Equations, Vol. 3, Elsevier, 317-400, (2006) Google Scholar

[26]

N. HiranoC. Saccon and N. Shioji, Brezis-Nirenberg type theorems and multiplicity of positive solutions for a singular elliptic problem, J. Differential Equations, 245 (2008), 1997-2037.  doi: 10.1016/j.jde.2008.06.020.  Google Scholar

[27]

G. Kirchhoff, Mechanik, Teubner, Leipzig, 1883. Google Scholar

[28]

S. Kyritsi and N. Papageorgiou, Pairs of positive solutions for singular p-Laplacian equations with a p-superlinear potential, Nonlinear Anal., 73 (2010), 1136-1142.  doi: 10.1016/j.na.2010.04.019.  Google Scholar

[29]

A. V. Lair and A. W. Shaker, Classical and weak solutions of a singular semilinear elliptic problem, J. Math. Anal. Appl., 211 (1997), 371-385.  doi: 10.1006/jmaa.1997.5470.  Google Scholar

[30]

A. C. Lazer and P. J. McKenna, On a singular nonlinear elliptic boundary value problem, Proc. Amer. Math. Soc., 111 (1991), 721-730.  doi: 10.2307/2048410.  Google Scholar

[31]

J. F. LiaoX. F. KeC. Y. Lei and C. L. Tang, A uniqueness result for Kirchhoff type problems with singularity, Appl.Math.Lett., 59 (2016), 24-30.  doi: 10.1016/j.aml.2016.03.001.  Google Scholar

[32]

J. L. Lions, On some questions in boundary value problems of mathematical physics, North-Holland Math. Stud, Vol. 30, North-Holland, Amsterdam, 1978, pp. 284-346.  Google Scholar

[33]

N. Loc and K. Schmitt, Boundary value problems for singular elliptic equations, Rocky Mountain Journal of Mathematics, 41 (2011), 555-572.  doi: 10.1216/RMJ-2011-41-2-555.  Google Scholar

[34]

M. Montenegro and E. Silva, Two solutions for s singular elliptic equation by variational methods, Annali Della Scuola Normale Superiore Di Pisa, 11 (2012), 143-165.   Google Scholar

[35]

K. Perera and Z. Zhang, Nontrivial solutions of Kirchhoff-type problems via the Yang index, J. Differential Equations, 221 (2006), 246-255.  doi: 10.1016/j.jde.2005.03.006.  Google Scholar

[36]

J. P. Shi and M. X. Yao, On a singular semilinear elliptic problem, Proc. Roy. Soc. Edinburgh, 128A (1998), 1389-1401.  doi: 10.1017/S0308210500027384.  Google Scholar

[37]

L. Xing and S. Yijing, Multiple positive solutions for Kirchhoff type problems with singularity, Comm. Pure Appl. Anal., 12 (2013), 721-733.   Google Scholar

[38]

S. Yijing, Compatibility phenomena in singular problems, Proc. Roy. Soc. Edinburgh Sect. A, 143 (2013), 1321-1330.  doi: 10.1017/S030821051100117X.  Google Scholar

[39]

S. Yijing and Z. Duanzhi, The role of the power 3 for elliptic equations with negative exponents, Calc.Var. Partial Differential Equations, 49 (2014), 909-922.  doi: 10.1007/s00526-013-0604-x.  Google Scholar

[40]

S. Yijing and W. Shaoping, An exact estimate result for a class of singular equations with critical exponents, J. Funct. Anal., 260 (2011), 1257-1284.  doi: 10.1016/j.jfa.2010.11.018.  Google Scholar

[41]

S. Yijing and L. Yiming, The planar Orlicz Minkowski problem in the L1-sense, Adv. Math., 281 (2015), 1364-1383.  doi: 10.1016/j.aim.2015.03.032.  Google Scholar

[42]

Z. Zhang and J. Cheng, Existence and optimal estimates of solutions for singular nonlinear Dirichlet problems, Nonlinear Anal., 57 (2004), 473-484.  doi: 10.1016/j.na.2004.02.025.  Google Scholar

[43]

Z. Zhang and K. Perera, Sign changing solutions of Kirchhoff type problems via invariant sets of descent flow, J. Math. Anal. Appl., 317 (2006), 456-463.  doi: 10.1016/j.jmaa.2005.06.102.  Google Scholar

[1]

Yahui Niu. A Hopf type lemma and the symmetry of solutions for a class of Kirchhoff equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021027

[2]

Andrea Signori. Penalisation of long treatment time and optimal control of a tumour growth model of Cahn–Hilliard type with singular potential. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2519-2542. doi: 10.3934/dcds.2020373

[3]

Vladimir Georgiev, Sandra Lucente. Focusing nlkg equation with singular potential. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1387-1406. doi: 10.3934/cpaa.2018068

[4]

Yongqiang Fu, Xiaoju Zhang. Global existence and asymptotic behavior of weak solutions for time-space fractional Kirchhoff-type diffusion equations. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021091

[5]

Bruno Premoselli. Einstein-Lichnerowicz type singular perturbations of critical nonlinear elliptic equations in dimension 3. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021069

[6]

Ying Sui, Huimin Yu. Singularity formation for compressible Euler equations with time-dependent damping. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021062

[7]

Maoding Zhen, Binlin Zhang, Xiumei Han. A new approach to get solutions for Kirchhoff-type fractional Schrödinger systems involving critical exponents. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021115

[8]

Xin Zhong. Global strong solution and exponential decay for nonhomogeneous Navier-Stokes and magnetohydrodynamic equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3563-3578. doi: 10.3934/dcdsb.2020246

[9]

Minh-Phuong Tran, Thanh-Nhan Nguyen. Pointwise gradient bounds for a class of very singular quasilinear elliptic equations. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021043

[10]

Oleksandr Boichuk, Victor Feruk. Boundary-value problems for weakly singular integral equations. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021094

[11]

Zhang Chao, Minghua Yang. BMO type space associated with Neumann operator and application to a class of parabolic equations. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021104

[12]

Khalid Latrach, Hssaine Oummi, Ahmed Zeghal. Existence results for nonlinear mono-energetic singular transport equations: $ L^p $-spaces. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021028

[13]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2699-2723. doi: 10.3934/dcds.2020382

[14]

Jose Anderson Cardoso, Patricio Cerda, Denilson Pereira, Pedro Ubilla. Schrödinger equations with vanishing potentials involving Brezis-Kamin type problems. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2947-2969. doi: 10.3934/dcds.2020392

[15]

Tôn Việt Tạ. Strict solutions to stochastic semilinear evolution equations in M-type 2 Banach spaces. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021050

[16]

Asato Mukai, Yukihiro Seki. Refined construction of type II blow-up solutions for semilinear heat equations with Joseph–Lundgren supercritical nonlinearity. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021060

[17]

Ankit Kumar, Kamal Jeet, Ramesh Kumar Vats. Controllability of Hilfer fractional integro-differential equations of Sobolev-type with a nonlocal condition in a Banach space. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021016

[18]

Guo-Bao Zhang, Ruyun Ma, Xue-Shi Li. Traveling waves of a Lotka-Volterra strong competition system with nonlocal dispersal. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 587-608. doi: 10.3934/dcdsb.2018035

[19]

Daniele Cassani, Luca Vilasi, Jianjun Zhang. Concentration phenomena at saddle points of potential for Schrödinger-Poisson systems. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021039

[20]

Siting Liu, Levon Nurbekyan. Splitting methods for a class of non-potential mean field games. Journal of Dynamics & Games, 2021  doi: 10.3934/jdg.2021014

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (358)
  • HTML views (210)
  • Cited by (3)

Other articles
by authors

[Back to Top]