# American Institute of Mathematical Sciences

May  2019, 18(3): 1447-1482. doi: 10.3934/cpaa.2019070

## Stability of axially-symmetric solutions to incompressible magnetohydrodynamics with no azimuthal velocity and with only azimuthal magnetic field

 1 Institute of Mathematics, Polish Academy of Sciences, Śniadeckich 8, 00-950 Warsaw, Poland 2 Institute of Mathematics and Cryptology, Cybernetics Faculty, Military University of Technology, S. Kaliskiego 2, 00-908 Warsaw, Poland

The author thanks to professor Yoshihiro Shibata for the essential correction of the proof of Proposition 2

Received  December 2017 Revised  September 2018 Published  November 2018

Incompressible viscous axially-symmetric magnetohydrodynamics is considered in a bounded axially-symmetric cylinder. Vanishing of the normal components, azimuthal components and also azimuthal components of rotation of the velocity and the magnetic field is assumed on the boundary. First, global existence of regular special solutions, such that the velocity is without the swirl but the magnetic field has only the swirl component, is proved. Next, the existence of global regular axially-symmetric solutions which are initially close to the special solutions and remain close to them for all time is proved. The result is shown under sufficiently small differences of the external forces. All considerations are performed step by step in time and are made by the energy method. In view of complicated calculations estimates are only derived so existence should follow from the Faedo-Galerkin method.

Citation: Wojciech M. Zajączkowski. Stability of axially-symmetric solutions to incompressible magnetohydrodynamics with no azimuthal velocity and with only azimuthal magnetic field. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1447-1482. doi: 10.3934/cpaa.2019070
##### References:

show all references

##### References:
 [1] Cheng-Jie Liu, Ya-Guang Wang, Tong Yang. Global existence of weak solutions to the three-dimensional Prandtl equations with a special structure. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 2011-2029. doi: 10.3934/dcdss.2016082 [2] Xiaoli Li, Dehua Wang. Global solutions to the incompressible magnetohydrodynamic equations. Communications on Pure & Applied Analysis, 2012, 11 (2) : 763-783. doi: 10.3934/cpaa.2012.11.763 [3] Felipe Linares, Gustavo Ponce. On special regularity properties of solutions of the Zakharov-Kuznetsov equation. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1561-1572. doi: 10.3934/cpaa.2018074 [4] Tianhong Li. Some special solutions of the multidimensional Euler equations in $R^N$. Communications on Pure & Applied Analysis, 2005, 4 (4) : 757-762. doi: 10.3934/cpaa.2005.4.757 [5] Mahesh G. Nerurkar, Héctor J. Sussmann. Construction of ergodic cocycles that are fundamental solutions to linear systems of a special form. Journal of Modern Dynamics, 2007, 1 (2) : 205-253. doi: 10.3934/jmd.2007.1.205 [6] Jerzy Gawinecki, Wojciech M. Zajączkowski. Global regular solutions to two-dimensional thermoviscoelasticity. Communications on Pure & Applied Analysis, 2016, 15 (3) : 1009-1028. doi: 10.3934/cpaa.2016.15.1009 [7] Zhen Lei, Yi Zhou. BKM's criterion and global weak solutions for magnetohydrodynamics with zero viscosity. Discrete & Continuous Dynamical Systems - A, 2009, 25 (2) : 575-583. doi: 10.3934/dcds.2009.25.575 [8] Huali Zhang. Global large smooth solutions for 3-D Hall-magnetohydrodynamics. Discrete & Continuous Dynamical Systems - A, 2019, 39 (11) : 6669-6682. doi: 10.3934/dcds.2019290 [9] Sitong Chen, Xianhua Tang. Existence of ground state solutions for the planar axially symmetric Schrödinger-Poisson system. Discrete & Continuous Dynamical Systems - B, 2019, 24 (9) : 4685-4702. doi: 10.3934/dcdsb.2018329 [10] Huajun Gong, Jinkai Li. Global existence of strong solutions to incompressible MHD. Communications on Pure & Applied Analysis, 2014, 13 (4) : 1553-1561. doi: 10.3934/cpaa.2014.13.1553 [11] David G. Ebin. Global solutions of the equations of elastodynamics for incompressible materials. Electronic Research Announcements, 1996, 2: 50-59. [12] Huajun Gong, Jinkai Li. Global existence of strong solutions to incompressible MHD. Communications on Pure & Applied Analysis, 2014, 13 (3) : 1337-1345. doi: 10.3934/cpaa.2014.13.1337 [13] Peter Dormayer, Anatoli F. Ivanov. Stability of symmetric periodic solutions with small amplitude of $\dot x(t)=\alpha f(x(t), x(t-1))$. Discrete & Continuous Dynamical Systems - A, 1999, 5 (1) : 61-82. doi: 10.3934/dcds.1999.5.61 [14] Joanna Rencławowicz, Wojciech M. Zajączkowski. Global regular solutions to the Navier-Stokes equations with large flux. Conference Publications, 2011, 2011 (Special) : 1234-1243. doi: 10.3934/proc.2011.2011.1234 [15] Oleksiy V. Kapustyan, Pavlo O. Kasyanov, José Valero. Regular solutions and global attractors for reaction-diffusion systems without uniqueness. Communications on Pure & Applied Analysis, 2014, 13 (5) : 1891-1906. doi: 10.3934/cpaa.2014.13.1891 [16] Susanna Terracini, Juncheng Wei. DCDS-A Special Volume Qualitative properties of solutions of nonlinear elliptic equations and systems. Preface. Discrete & Continuous Dynamical Systems - A, 2014, 34 (6) : i-ii. doi: 10.3934/dcds.2014.34.6i [17] Manuel Núñez. Existence of solutions of the equations of electron magnetohydrodynamics in a bounded domain. Discrete & Continuous Dynamical Systems - A, 2010, 26 (3) : 1019-1034. doi: 10.3934/dcds.2010.26.1019 [18] Bingkang Huang, Lan Zhang. A global existence of classical solutions to the two-dimensional Vlasov-Fokker-Planck and magnetohydrodynamics equations with large initial data. Kinetic & Related Models, 2019, 12 (2) : 357-396. doi: 10.3934/krm.2019016 [19] Ning Ju. The global attractor for the solutions to the 3D viscous primitive equations. Discrete & Continuous Dynamical Systems - A, 2007, 17 (1) : 159-179. doi: 10.3934/dcds.2007.17.159 [20] Bo-Qing Dong, Zhi-Min Chen. Asymptotic profiles of solutions to the 2D viscous incompressible micropolar fluid flows. Discrete & Continuous Dynamical Systems - A, 2009, 23 (3) : 765-784. doi: 10.3934/dcds.2009.23.765

2018 Impact Factor: 0.925