• Previous Article
    Dynamics of non-autonomous fractional stochastic Ginzburg-Landau equations with multiplicative noise
  • CPAA Home
  • This Issue
  • Next Article
    Global asymptotic stability of traveling waves to the Allen-Cahn equation with a fractional Laplacian
September  2019, 18(5): 2433-2455. doi: 10.3934/cpaa.2019110

Existence and decay property of ground state solutions for Hamiltonian elliptic system

1. 

School of Mathematics and Statistics, Hunan University of Commerce, Changsha, 410205 Hunan, China

2. 

School of Mathematics and Statistics, Central South University, Changsha, 410083 Hunan, China

* Corresponding author

Received  May 2018 Revised  December 2018 Published  April 2019

Fund Project: This work was supported by the NNSF (Nos. 11701173, 11601145, 11571370, 61772196), by the Natural Science Foundation of Hunan Province (Nos. 2017JJ3130, 2017JJ3131), by the Excellent youth project of Education Department of Hunan Province (17B143), by the Hunan University of Commerce Innovation Driven Project for Young Teacher (16QD008), and by the Project funded by China Postdoctoral Science Foundation (2018M640758)

In this paper we study the following nonlinear Hamiltonian elliptic system with gradient term
$ \begin{eqnarray*} \left\{ \begin{array}{ll} -\Delta u +\vec{b}(x)\cdot \nabla u +u+V(x)v = f(x, |z|)v, \; \; x\in\mathbb{R}^{N}, \\ -\Delta v -\vec{b}(x)\cdot \nabla v +v+V(x)u = f(x, |z|)u, \; \; x\in\mathbb{R}^{N}, \ \end{array} \right. \end{eqnarray*} $
where
$ z = (u, v)\in\mathbb{R}^{2} $
. Under some suitable conditions on the potential and nonlinearity, we obtain the existence of ground state solutions in periodic case and asymptotically periodic case via variational methods, respectively. Moreover, we also explore some properties of these ground state solutions, such as compactness of set of ground state solutions and exponential decay of ground state solutions.
Citation: Jian Zhang, Wen Zhang. Existence and decay property of ground state solutions for Hamiltonian elliptic system. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2433-2455. doi: 10.3934/cpaa.2019110
References:
[1]

C. O. AlvesJ. M. do Ó and O. H. Miyagaki, On nonlinear perturbation of a periodic elliptic problem in $\mathbb{R}^2$ involving critical growth, Nonlinear Anal., 56 (2004), 781-791. doi: 10.1016/j.na.2003.06.003. Google Scholar

[2]

S. Alama and Y. Y. Li, On "multibump" bound states for certain semilinear elliptic equations, Indiana Univ. Math. J., 41 (1992), 983-1026. doi: 10.1512/iumj.1992.41.41052. Google Scholar

[3]

A. I. Ávila and J. Yang, On the existence and shape of least energy solutions for some elliptic systems, J. Differential Equations, 191 (2003), 348-376. doi: 10.1016/S0022-0396(03)00017-2. Google Scholar

[4]

T. Bartsch and D. G. De Figueiredo, Infinitely mang solutions of nonlinear elliptic systems, in Progr. Nonlinear Differential Equations Appl., Vol. 35, Birkhäuser, Basel, Switzerland. (1999), 51–67. Google Scholar

[5]

V. Benci and P. H. Rabinowitz, Critical point theorems for indefinite functionals, Invent. Math., 52 (1979), 241-273. doi: 10.1007/BF01389883. Google Scholar

[6] Y. H. Ding, Variational Methods for Strongly Indefinite Problems, World Scientific Press, 2008. doi: 10.1142/9789812709639. Google Scholar
[7]

D. G. De Figueiredo and Y. H. Ding, Strongly indefinite functions and multiple solutions of elliptic systems, Trans. Am. Math. Soc., 355 (2003), 2973-2989. doi: 10.1090/S0002-9947-03-03257-4. Google Scholar

[8]

D. G. De Figueiredo and P. L. Felmer, On superquadiatic elliptic systems, Trans. Am. Math. Soc., 343 (1994), 97-116. doi: 10.2307/2154523. Google Scholar

[9]

D. G. De Figueiredo, Semilinear elliptic systems: existence, multiplicity, symmetry of solutions, Handbook of Differential Equations Stationary Partial Differential Equations, 5, Elsevier, 2008, p.1–48. Chapter1. doi: 10.1016/S1874-5733(08)80008-3. Google Scholar

[10]

D. G. De Figueiredo and J. Yang, Decay, symmetry and existence of solutions of semilinear elliptic systems, Nonlinear. Anal., 331 (1998), 211-234. doi: 10.1016/S0362-546X(97)00548-8. Google Scholar

[11]

M. J. Esteban and E. Séré, Stationary states of nonlinear Dirac equations: A variational approach, Comm. Math. Phys., 171 (1995), 323-350. Google Scholar

[12]

J. Hulshof and R. C. A. M. De Vorst, Differential systems with strongly variational structure, J. Funct. Anal., 113 (1993), 32-58. doi: 10.1006/jfan.1993.1062. Google Scholar

[13]

S. Itô, Diffusion Equations, Transl. Math. Monogr., vol. 114, American Mathematical Society, Providence, RI, 1992. Google Scholar

[14]

W. Kryszewski and A. Szulkin, An infinite dimensional morse theorem with applications, Trans. Am. Math. Soc., 349 (1997), 3184-3234. doi: 10.1090/S0002-9947-97-01963-6. Google Scholar

[15]

W. Kryszewski and A. Szulkin, Generalized linking theorem with an application to semilinear Schrödinger equation, Adv. Differential Equations, 3 (1998), 441-472. Google Scholar

[16]

J. L. Lions, Optimal Control of Systems Governed by Partial Differential Equations, Springer-Verlag, 1971. Google Scholar

[17]

P. L. Lions, The concentration compactness principle in the calculus of variations. The locally compact case. Part Ⅱ, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1 (1984), 223-283. Google Scholar

[18]

G. B. Li and A. Szulkin, An asymptotically periodic Schrödinger equation with indefinite linear part, Commun. Contemp. Math., 4 (2002), 763-776. doi: 10.1142/S0219199702000853. Google Scholar

[19]

G. B. Li and J. F. Yang, Asymptotically linear elliptic systems, Commun. Part. Diffe. Equ., 29 (2004), 925-954. doi: 10.1081/PDE-120037337. Google Scholar

[20]

M. Nagasawa, Schrödinger Equations and Diffusion Theory, Birkhäuser, 1993. Google Scholar

[21]

A. Pankov, Periodic nonlinear Schrödinger equation with application to photonic crystals, Milan J. Math., 73 (2005), 259-287. doi: 10.1007/s00032-005-0047-8. Google Scholar

[22]

P. H. Rabinowitz, On a class of nonlinear Schrödinger equations, Z. Angew. Math. Phys., 43 (1992), 270-291. doi: 10.1007/BF00946631. Google Scholar

[23]

B. Simon, Schrödinger semigroups, Bull. Amer. Math. Soc., 7 (1982), 447-526. doi: 10.1090/S0273-0979-1982-15041-8. Google Scholar

[24]

B. Sirakov, On the existence of solutions of Hamiltonian elliptic systems in $\mathbb{R}^{N}$, Adv. Differential Equations, 5 (2000), 1445-1464. Google Scholar

[25]

A. Szulkin and T. Weth, Ground state solutions for some indefinite variational problems, J. Funct. Anal., 257 (2009), 3802-3822. doi: 10.1016/j.jfa.2009.09.013. Google Scholar

[26]

E. A. Silva and G. F. Vieira, Quasilinear asymptotically periodic Schrödinger equations with critical growth, Calc. Var. PDE, 39 (2010), 1-33. doi: 10.1007/s00526-009-0299-1. Google Scholar

[27]

E. A. Silva and G. F. Vieira, Quasilinear asymptotically periodic schrödinger equations with subcritical growth, Nonlinear Anal., 72 (2010), 2935-2949. doi: 10.1016/j.na.2009.11.037. Google Scholar

[28]

X. H. Tang, Non-Nehari manifold method for superlinear Schrödinger equation, Taiwan J. Math., 18 (2014), 1957-1979. doi: 10.11650/tjm.18.2014.3541. Google Scholar

[29]

X. H. Tang, Non-Nehari manifold method for asymptotically periodic Schrödinger equations, Sci. China Math., 58 (2015), 715-728. doi: 10.1007/s11425-014-4957-1. Google Scholar

[30]

M. Willem, Minimax Theorems, Birkhäuser, Berlin, 1996. doi: 10.1007/978-1-4612-4146-1. Google Scholar

[31]

M. B. YangW. X. Chen and Y. H. Ding, Solutions of a class of Hamiltonian elliptic systems in $\mathbb{R}^{N}$, J. Math. Anal. Appl., 352 (2010), 338-349. doi: 10.1016/j.jmaa.2009.07.052. Google Scholar

[32]

F. K. Zhao and Y. H. Ding, On Hamiltonian elliptic systems with periodic or non-periodic potentials, J. Differential Equations, 249 (2010), 2964-2985. doi: 10.1016/j.jde.2010.09.014. Google Scholar

[33]

F. K. ZhaoL. G. Zhao and Y. H. Ding, Infinitly mang solutions for asymptotically linear periodic Hamiltonian system, ESAIM: Control, Optim. Calc. Vari., 16 (2010), 77-91. doi: 10.1051/cocv:2008064. Google Scholar

[34]

J. ZhangX. Tang and W. Zhang, Ground-state solutions for superquadratic Hamiltonian elliptic systems with gradient terms, Nonlinear Anal., 95 (2014), 1-10. doi: 10.1016/j.na.2013.07.027. Google Scholar

[35]

J. ZhangW. Zhang and X. Tang, Ground state solutions for Hamiltonian elliptic system with inverse square potential, Discrete Contin. Dyn. Syst., 37 (2017), 4565-4583. doi: 10.3934/dcds.2017195. Google Scholar

[36]

J. ZhangX. Tang and W. Zhang, On semiclassical ground state solutions for Hamiltonian elliptic systems, Appl. Anal., 94 (2015), 1380-1396. doi: 10.1080/00036811.2014.931940. Google Scholar

[37]

J. ZhangX. Tang and W. Zhang, On semiclassical ground states for Hamiltonian elliptic system with critical growth, Topol. Meth. Nonl. Anal., 49 (2017), 245-272. doi: 10.12775/tmna.2016.069. Google Scholar

[38]

W. ZhangJ ZhangZh ang and H. Mi, On fractional Schrödinger equation with periodic and asymptotically periodic conditions, Compu. Math. Appl., 74 (2017), 1321-1332. doi: 10.1016/j.camwa.2017.06.017. Google Scholar

[39]

J. ZhangW. Zhang and X. H. Tang, Semiclassical limits of ground states for Hamiltonian elliptic system with gradient term, Nonlinear Anal. Real World Appl., 40 (2018), 377-402. doi: 10.1016/j.nonrwa.2017.08.010. Google Scholar

[40]

J. ZhangW. Zhang and X. L. Xie, Existence and concentration of semiclassical solutions for Hamiltonian elliptic system, Comm. Pure Appl. Anal., 15 (2016), 599-622. doi: 10.3934/cpaa.2016.15.599. Google Scholar

[41]

H. ZhangJ. X. Xu and F. B. Zhang, On a class of semilinear Schrödinger equations with indefinite linear part, J. Math. Anal. Appl., 414 (2014), 710-724. doi: 10.1016/j.jmaa.2014.01.001. Google Scholar

show all references

References:
[1]

C. O. AlvesJ. M. do Ó and O. H. Miyagaki, On nonlinear perturbation of a periodic elliptic problem in $\mathbb{R}^2$ involving critical growth, Nonlinear Anal., 56 (2004), 781-791. doi: 10.1016/j.na.2003.06.003. Google Scholar

[2]

S. Alama and Y. Y. Li, On "multibump" bound states for certain semilinear elliptic equations, Indiana Univ. Math. J., 41 (1992), 983-1026. doi: 10.1512/iumj.1992.41.41052. Google Scholar

[3]

A. I. Ávila and J. Yang, On the existence and shape of least energy solutions for some elliptic systems, J. Differential Equations, 191 (2003), 348-376. doi: 10.1016/S0022-0396(03)00017-2. Google Scholar

[4]

T. Bartsch and D. G. De Figueiredo, Infinitely mang solutions of nonlinear elliptic systems, in Progr. Nonlinear Differential Equations Appl., Vol. 35, Birkhäuser, Basel, Switzerland. (1999), 51–67. Google Scholar

[5]

V. Benci and P. H. Rabinowitz, Critical point theorems for indefinite functionals, Invent. Math., 52 (1979), 241-273. doi: 10.1007/BF01389883. Google Scholar

[6] Y. H. Ding, Variational Methods for Strongly Indefinite Problems, World Scientific Press, 2008. doi: 10.1142/9789812709639. Google Scholar
[7]

D. G. De Figueiredo and Y. H. Ding, Strongly indefinite functions and multiple solutions of elliptic systems, Trans. Am. Math. Soc., 355 (2003), 2973-2989. doi: 10.1090/S0002-9947-03-03257-4. Google Scholar

[8]

D. G. De Figueiredo and P. L. Felmer, On superquadiatic elliptic systems, Trans. Am. Math. Soc., 343 (1994), 97-116. doi: 10.2307/2154523. Google Scholar

[9]

D. G. De Figueiredo, Semilinear elliptic systems: existence, multiplicity, symmetry of solutions, Handbook of Differential Equations Stationary Partial Differential Equations, 5, Elsevier, 2008, p.1–48. Chapter1. doi: 10.1016/S1874-5733(08)80008-3. Google Scholar

[10]

D. G. De Figueiredo and J. Yang, Decay, symmetry and existence of solutions of semilinear elliptic systems, Nonlinear. Anal., 331 (1998), 211-234. doi: 10.1016/S0362-546X(97)00548-8. Google Scholar

[11]

M. J. Esteban and E. Séré, Stationary states of nonlinear Dirac equations: A variational approach, Comm. Math. Phys., 171 (1995), 323-350. Google Scholar

[12]

J. Hulshof and R. C. A. M. De Vorst, Differential systems with strongly variational structure, J. Funct. Anal., 113 (1993), 32-58. doi: 10.1006/jfan.1993.1062. Google Scholar

[13]

S. Itô, Diffusion Equations, Transl. Math. Monogr., vol. 114, American Mathematical Society, Providence, RI, 1992. Google Scholar

[14]

W. Kryszewski and A. Szulkin, An infinite dimensional morse theorem with applications, Trans. Am. Math. Soc., 349 (1997), 3184-3234. doi: 10.1090/S0002-9947-97-01963-6. Google Scholar

[15]

W. Kryszewski and A. Szulkin, Generalized linking theorem with an application to semilinear Schrödinger equation, Adv. Differential Equations, 3 (1998), 441-472. Google Scholar

[16]

J. L. Lions, Optimal Control of Systems Governed by Partial Differential Equations, Springer-Verlag, 1971. Google Scholar

[17]

P. L. Lions, The concentration compactness principle in the calculus of variations. The locally compact case. Part Ⅱ, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1 (1984), 223-283. Google Scholar

[18]

G. B. Li and A. Szulkin, An asymptotically periodic Schrödinger equation with indefinite linear part, Commun. Contemp. Math., 4 (2002), 763-776. doi: 10.1142/S0219199702000853. Google Scholar

[19]

G. B. Li and J. F. Yang, Asymptotically linear elliptic systems, Commun. Part. Diffe. Equ., 29 (2004), 925-954. doi: 10.1081/PDE-120037337. Google Scholar

[20]

M. Nagasawa, Schrödinger Equations and Diffusion Theory, Birkhäuser, 1993. Google Scholar

[21]

A. Pankov, Periodic nonlinear Schrödinger equation with application to photonic crystals, Milan J. Math., 73 (2005), 259-287. doi: 10.1007/s00032-005-0047-8. Google Scholar

[22]

P. H. Rabinowitz, On a class of nonlinear Schrödinger equations, Z. Angew. Math. Phys., 43 (1992), 270-291. doi: 10.1007/BF00946631. Google Scholar

[23]

B. Simon, Schrödinger semigroups, Bull. Amer. Math. Soc., 7 (1982), 447-526. doi: 10.1090/S0273-0979-1982-15041-8. Google Scholar

[24]

B. Sirakov, On the existence of solutions of Hamiltonian elliptic systems in $\mathbb{R}^{N}$, Adv. Differential Equations, 5 (2000), 1445-1464. Google Scholar

[25]

A. Szulkin and T. Weth, Ground state solutions for some indefinite variational problems, J. Funct. Anal., 257 (2009), 3802-3822. doi: 10.1016/j.jfa.2009.09.013. Google Scholar

[26]

E. A. Silva and G. F. Vieira, Quasilinear asymptotically periodic Schrödinger equations with critical growth, Calc. Var. PDE, 39 (2010), 1-33. doi: 10.1007/s00526-009-0299-1. Google Scholar

[27]

E. A. Silva and G. F. Vieira, Quasilinear asymptotically periodic schrödinger equations with subcritical growth, Nonlinear Anal., 72 (2010), 2935-2949. doi: 10.1016/j.na.2009.11.037. Google Scholar

[28]

X. H. Tang, Non-Nehari manifold method for superlinear Schrödinger equation, Taiwan J. Math., 18 (2014), 1957-1979. doi: 10.11650/tjm.18.2014.3541. Google Scholar

[29]

X. H. Tang, Non-Nehari manifold method for asymptotically periodic Schrödinger equations, Sci. China Math., 58 (2015), 715-728. doi: 10.1007/s11425-014-4957-1. Google Scholar

[30]

M. Willem, Minimax Theorems, Birkhäuser, Berlin, 1996. doi: 10.1007/978-1-4612-4146-1. Google Scholar

[31]

M. B. YangW. X. Chen and Y. H. Ding, Solutions of a class of Hamiltonian elliptic systems in $\mathbb{R}^{N}$, J. Math. Anal. Appl., 352 (2010), 338-349. doi: 10.1016/j.jmaa.2009.07.052. Google Scholar

[32]

F. K. Zhao and Y. H. Ding, On Hamiltonian elliptic systems with periodic or non-periodic potentials, J. Differential Equations, 249 (2010), 2964-2985. doi: 10.1016/j.jde.2010.09.014. Google Scholar

[33]

F. K. ZhaoL. G. Zhao and Y. H. Ding, Infinitly mang solutions for asymptotically linear periodic Hamiltonian system, ESAIM: Control, Optim. Calc. Vari., 16 (2010), 77-91. doi: 10.1051/cocv:2008064. Google Scholar

[34]

J. ZhangX. Tang and W. Zhang, Ground-state solutions for superquadratic Hamiltonian elliptic systems with gradient terms, Nonlinear Anal., 95 (2014), 1-10. doi: 10.1016/j.na.2013.07.027. Google Scholar

[35]

J. ZhangW. Zhang and X. Tang, Ground state solutions for Hamiltonian elliptic system with inverse square potential, Discrete Contin. Dyn. Syst., 37 (2017), 4565-4583. doi: 10.3934/dcds.2017195. Google Scholar

[36]

J. ZhangX. Tang and W. Zhang, On semiclassical ground state solutions for Hamiltonian elliptic systems, Appl. Anal., 94 (2015), 1380-1396. doi: 10.1080/00036811.2014.931940. Google Scholar

[37]

J. ZhangX. Tang and W. Zhang, On semiclassical ground states for Hamiltonian elliptic system with critical growth, Topol. Meth. Nonl. Anal., 49 (2017), 245-272. doi: 10.12775/tmna.2016.069. Google Scholar

[38]

W. ZhangJ ZhangZh ang and H. Mi, On fractional Schrödinger equation with periodic and asymptotically periodic conditions, Compu. Math. Appl., 74 (2017), 1321-1332. doi: 10.1016/j.camwa.2017.06.017. Google Scholar

[39]

J. ZhangW. Zhang and X. H. Tang, Semiclassical limits of ground states for Hamiltonian elliptic system with gradient term, Nonlinear Anal. Real World Appl., 40 (2018), 377-402. doi: 10.1016/j.nonrwa.2017.08.010. Google Scholar

[40]

J. ZhangW. Zhang and X. L. Xie, Existence and concentration of semiclassical solutions for Hamiltonian elliptic system, Comm. Pure Appl. Anal., 15 (2016), 599-622. doi: 10.3934/cpaa.2016.15.599. Google Scholar

[41]

H. ZhangJ. X. Xu and F. B. Zhang, On a class of semilinear Schrödinger equations with indefinite linear part, J. Math. Anal. Appl., 414 (2014), 710-724. doi: 10.1016/j.jmaa.2014.01.001. Google Scholar

[1]

Jian Zhang, Wen Zhang, Xianhua Tang. Ground state solutions for Hamiltonian elliptic system with inverse square potential. Discrete & Continuous Dynamical Systems - A, 2017, 37 (8) : 4565-4583. doi: 10.3934/dcds.2017195

[2]

Xiaoping Wang. Ground state homoclinic solutions for a second-order Hamiltonian system. Discrete & Continuous Dynamical Systems - S, 2019, 12 (7) : 2163-2175. doi: 10.3934/dcdss.2019139

[3]

Yinbin Deng, Wentao Huang. Positive ground state solutions for a quasilinear elliptic equation with critical exponent. Discrete & Continuous Dynamical Systems - A, 2017, 37 (8) : 4213-4230. doi: 10.3934/dcds.2017179

[4]

Zhanping Liang, Yuanmin Song, Fuyi Li. Positive ground state solutions of a quadratically coupled schrödinger system. Communications on Pure & Applied Analysis, 2017, 16 (3) : 999-1012. doi: 10.3934/cpaa.2017048

[5]

Jian Zhang, Wen Zhang, Xiaoliang Xie. Existence and concentration of semiclassical solutions for Hamiltonian elliptic system. Communications on Pure & Applied Analysis, 2016, 15 (2) : 599-622. doi: 10.3934/cpaa.2016.15.599

[6]

Jing Zhang. The analyticity and exponential decay of a Stokes-wave coupling system with viscoelastic damping in the variational framework. Evolution Equations & Control Theory, 2017, 6 (1) : 135-154. doi: 10.3934/eect.2017008

[7]

Sitong Chen, Xianhua Tang. Existence of ground state solutions for the planar axially symmetric Schrödinger-Poisson system. Discrete & Continuous Dynamical Systems - B, 2019, 24 (9) : 4685-4702. doi: 10.3934/dcdsb.2018329

[8]

Sitong Chen, Junping Shi, Xianhua Tang. Ground state solutions of Nehari-Pohozaev type for the planar Schrödinger-Poisson system with general nonlinearity. Discrete & Continuous Dynamical Systems - A, 2019, 39 (10) : 5867-5889. doi: 10.3934/dcds.2019257

[9]

Andrea Malchiodi. Topological methods for an elliptic equation with exponential nonlinearities. Discrete & Continuous Dynamical Systems - A, 2008, 21 (1) : 277-294. doi: 10.3934/dcds.2008.21.277

[10]

Vo Anh Khoa, Le Thi Phuong Ngoc, Nguyen Thanh Long. Existence, blow-up and exponential decay of solutions for a porous-elastic system with damping and source terms. Evolution Equations & Control Theory, 2019, 8 (2) : 359-395. doi: 10.3934/eect.2019019

[11]

Eugenii Shustin. Exponential decay of oscillations in a multidimensional delay differential system. Conference Publications, 2003, 2003 (Special) : 809-816. doi: 10.3934/proc.2003.2003.809

[12]

Stéphane Gerbi, Belkacem Said-Houari. Exponential decay for solutions to semilinear damped wave equation. Discrete & Continuous Dynamical Systems - S, 2012, 5 (3) : 559-566. doi: 10.3934/dcdss.2012.5.559

[13]

István Györi, Ferenc Hartung. Exponential stability of a state-dependent delay system. Discrete & Continuous Dynamical Systems - A, 2007, 18 (4) : 773-791. doi: 10.3934/dcds.2007.18.773

[14]

Marco A. S. Souto, Sérgio H. M. Soares. Ground state solutions for quasilinear stationary Schrödinger equations with critical growth. Communications on Pure & Applied Analysis, 2013, 12 (1) : 99-116. doi: 10.3934/cpaa.2013.12.99

[15]

C. Cortázar, Marta García-Huidobro. On the uniqueness of ground state solutions of a semilinear equation containing a weighted Laplacian. Communications on Pure & Applied Analysis, 2006, 5 (4) : 813-826. doi: 10.3934/cpaa.2006.5.813

[16]

Norihisa Ikoma. Existence of ground state solutions to the nonlinear Kirchhoff type equations with potentials. Discrete & Continuous Dynamical Systems - A, 2015, 35 (3) : 943-966. doi: 10.3934/dcds.2015.35.943

[17]

C. Cortázar, Marta García-Huidobro. On the uniqueness of ground state solutions of a semilinear equation containing a weighted Laplacian. Communications on Pure & Applied Analysis, 2006, 5 (1) : 71-84. doi: 10.3934/cpaa.2006.5.71

[18]

Kaimin Teng, Xiumei He. Ground state solutions for fractional Schrödinger equations with critical Sobolev exponent. Communications on Pure & Applied Analysis, 2016, 15 (3) : 991-1008. doi: 10.3934/cpaa.2016.15.991

[19]

Xiao-Jing Zhong, Chun-Lei Tang. The existence and nonexistence results of ground state nodal solutions for a Kirchhoff type problem. Communications on Pure & Applied Analysis, 2017, 16 (2) : 611-628. doi: 10.3934/cpaa.2017030

[20]

Dengfeng Lü. Existence and concentration behavior of ground state solutions for magnetic nonlinear Choquard equations. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1781-1795. doi: 10.3934/cpaa.2016014

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (38)
  • HTML views (160)
  • Cited by (0)

Other articles
by authors

[Back to Top]