• Previous Article
    Global asymptotic stability of traveling waves to the Allen-Cahn equation with a fractional Laplacian
  • CPAA Home
  • This Issue
  • Next Article
    Large deviations for stochastic 3D Leray-$ \alpha $ model with fractional dissipation
September  2019, 18(5): 2473-2489. doi: 10.3934/cpaa.2019112

A note on global existence for the Zakharov system on $ \mathbb{T} $

Massachusetts Institute of Technology, 182 Memorial Drive, Cambridge, MA 02139, USA

Received  June 2018 Revised  January 2019 Published  April 2019

Fund Project: The first author is supported by NSF MSPRF #1704865

We show that the one-dimensional periodic Zakharov system is globally well-posed in a class of low-regularity Fourier-Lebesgue spaces. The result is obtained by combining the I-method with Bourgain's high-low decomposition method. As a corollary, we obtain probabilistic global existence results in $ L^2 $-based Sobolev spaces. We also obtain global well-posedness in $ H^{\frac12+} \times L^2 $, which is sharp (up to endpoints) in the class of $ L^2 $-based Sobolev spaces.

Citation: E. Compaan. A note on global existence for the Zakharov system on $ \mathbb{T} $. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2473-2489. doi: 10.3934/cpaa.2019112
References:
[1]

I. BejenaruS. HerrJ. Holmer and D. Tataru, On the 2d Zakharov system with $L^2$ Schrödinger data, Nonlinearity, 22 (2009), 1063-1089. doi: 10.1088/0951-7715/22/5/007. Google Scholar

[2]

J. Bourgain, On the Cauchy and invariant measure problem for the periodic Zakharov system, Duke Math. J., 76 (1994), 175-202. doi: 10.1215/S0012-7094-94-07607-2. Google Scholar

[3]

J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. I. Schrödinger equations, Geom. Funct. Anal., 3 (1993), 107-156. doi: 10.1007/BF01896020. Google Scholar

[4]

J. Bourgain, Periodic nonlinear Schrödinger equation and invariant measures, Comm. Math. Phys., 166 (1994), 1-26. Google Scholar

[5]

J. Bourgain, Refinement of Strichartz' inequality and applications to 2D-NLS with critical nonlinearity, Internat. Math. Res. Not., (1998), 253–283. doi: 10.1155/S1073792898000191. Google Scholar

[6]

J. Bourgain, A remark on normal forms and the "I-method" for periodic NLS, J. Anal. Math., 94 (2004), 125-157. doi: 10.1007/BF02789044. Google Scholar

[7]

J. CollianderM. KeelG. StaffilaniH. Takaoka and T. Tao, Global well-posedness for KdV in Sobolev spaces of negative index, Electron. J. Diff. Eq., 2001 (2001), 1-7. Google Scholar

[8]

J. Colliander and T. Oh, Almost sure well-posedness of the cubic nonlinear Schrödinger equation below $L^2(T)$, Duke Math. J., 161 (2012), 367-414. doi: 10.1215/00127094-1507400. Google Scholar

[9]

J. GinibreY. Tsutsumi and G. Velo, On the Cauchy problem for the Zakharov system, J. Funct. Anal., 151 (1997), 384-436. doi: 10.1006/jfan.1997.3148. Google Scholar

[10]

N. Kishimoto, Local well-posedness for the Zakharov system on the multidimensional torus, J. Anal. Math., 119 (2013), 213-253. doi: 10.1007/s11854-013-0007-0. Google Scholar

[11]

N. Kishimoto, Resonant decomposition and the I-method for the two-dimensional Zakharov system, Discrete Contin. Dyn. Syst., 33 (2013), 4095-4122. doi: 10.3934/dcds.2013.33.4095. Google Scholar

[12]

J. LebowitzH. Rose and E. Speer, Statistical mechanics of the nonlinear Schrödinger equation, J. Statist. Phys., 50 (1988), 657-687. doi: 10.1007/BF01026495. Google Scholar

[13]

T. Ozawa, Remarks on proofs of conservation laws for nonlinear Schrödinger equations, Calc. Var. Partial Differential Equations, 25 (2006), 403-408. doi: 10.1007/s00526-005-0349-2. Google Scholar

[14]

H. Takaoka, Well-posedness for the Zakharov system with the periodic boundary condition, Differential Integral Equations, 12 (1999), 789-810. Google Scholar

[15]

V. E. Zakharov, Collapse of Langmuir waves, Sov. Phys. JETP, 35 (1972), 908-914. Google Scholar

show all references

References:
[1]

I. BejenaruS. HerrJ. Holmer and D. Tataru, On the 2d Zakharov system with $L^2$ Schrödinger data, Nonlinearity, 22 (2009), 1063-1089. doi: 10.1088/0951-7715/22/5/007. Google Scholar

[2]

J. Bourgain, On the Cauchy and invariant measure problem for the periodic Zakharov system, Duke Math. J., 76 (1994), 175-202. doi: 10.1215/S0012-7094-94-07607-2. Google Scholar

[3]

J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. I. Schrödinger equations, Geom. Funct. Anal., 3 (1993), 107-156. doi: 10.1007/BF01896020. Google Scholar

[4]

J. Bourgain, Periodic nonlinear Schrödinger equation and invariant measures, Comm. Math. Phys., 166 (1994), 1-26. Google Scholar

[5]

J. Bourgain, Refinement of Strichartz' inequality and applications to 2D-NLS with critical nonlinearity, Internat. Math. Res. Not., (1998), 253–283. doi: 10.1155/S1073792898000191. Google Scholar

[6]

J. Bourgain, A remark on normal forms and the "I-method" for periodic NLS, J. Anal. Math., 94 (2004), 125-157. doi: 10.1007/BF02789044. Google Scholar

[7]

J. CollianderM. KeelG. StaffilaniH. Takaoka and T. Tao, Global well-posedness for KdV in Sobolev spaces of negative index, Electron. J. Diff. Eq., 2001 (2001), 1-7. Google Scholar

[8]

J. Colliander and T. Oh, Almost sure well-posedness of the cubic nonlinear Schrödinger equation below $L^2(T)$, Duke Math. J., 161 (2012), 367-414. doi: 10.1215/00127094-1507400. Google Scholar

[9]

J. GinibreY. Tsutsumi and G. Velo, On the Cauchy problem for the Zakharov system, J. Funct. Anal., 151 (1997), 384-436. doi: 10.1006/jfan.1997.3148. Google Scholar

[10]

N. Kishimoto, Local well-posedness for the Zakharov system on the multidimensional torus, J. Anal. Math., 119 (2013), 213-253. doi: 10.1007/s11854-013-0007-0. Google Scholar

[11]

N. Kishimoto, Resonant decomposition and the I-method for the two-dimensional Zakharov system, Discrete Contin. Dyn. Syst., 33 (2013), 4095-4122. doi: 10.3934/dcds.2013.33.4095. Google Scholar

[12]

J. LebowitzH. Rose and E. Speer, Statistical mechanics of the nonlinear Schrödinger equation, J. Statist. Phys., 50 (1988), 657-687. doi: 10.1007/BF01026495. Google Scholar

[13]

T. Ozawa, Remarks on proofs of conservation laws for nonlinear Schrödinger equations, Calc. Var. Partial Differential Equations, 25 (2006), 403-408. doi: 10.1007/s00526-005-0349-2. Google Scholar

[14]

H. Takaoka, Well-posedness for the Zakharov system with the periodic boundary condition, Differential Integral Equations, 12 (1999), 789-810. Google Scholar

[15]

V. E. Zakharov, Collapse of Langmuir waves, Sov. Phys. JETP, 35 (1972), 908-914. Google Scholar

[1]

Vanessa Barros, Felipe Linares. A remark on the well-posedness of a degenerated Zakharov system. Communications on Pure & Applied Analysis, 2015, 14 (4) : 1259-1274. doi: 10.3934/cpaa.2015.14.1259

[2]

Gustavo Ponce, Jean-Claude Saut. Well-posedness for the Benney-Roskes/Zakharov- Rubenchik system. Discrete & Continuous Dynamical Systems - A, 2005, 13 (3) : 811-825. doi: 10.3934/dcds.2005.13.811

[3]

Hung Luong. Local well-posedness for the Zakharov system on the background of a line soliton. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2657-2682. doi: 10.3934/cpaa.2018126

[4]

Takamori Kato. Global well-posedness for the Kawahara equation with low regularity. Communications on Pure & Applied Analysis, 2013, 12 (3) : 1321-1339. doi: 10.3934/cpaa.2013.12.1321

[5]

Thomas Y. Hou, Congming Li. Global well-posedness of the viscous Boussinesq equations. Discrete & Continuous Dynamical Systems - A, 2005, 12 (1) : 1-12. doi: 10.3934/dcds.2005.12.1

[6]

Ugur G. Abdulla. On the optimal control of the free boundary problems for the second order parabolic equations. I. Well-posedness and convergence of the method of lines. Inverse Problems & Imaging, 2013, 7 (2) : 307-340. doi: 10.3934/ipi.2013.7.307

[7]

Zhaohi Huo, Yueling Jia, Qiaoxin Li. Global well-posedness for the 3D Zakharov-Kuznetsov equation in energy space $H^1$. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 1797-1851. doi: 10.3934/dcdss.2016075

[8]

Francis Ribaud, Stéphane Vento. Local and global well-posedness results for the Benjamin-Ono-Zakharov-Kuznetsov equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (1) : 449-483. doi: 10.3934/dcds.2017019

[9]

Shinya Kinoshita. Well-posedness for the Cauchy problem of the Klein-Gordon-Zakharov system in 2D. Discrete & Continuous Dynamical Systems - A, 2018, 38 (3) : 1479-1504. doi: 10.3934/dcds.2018061

[10]

Isao Kato. Well-posedness for the Cauchy problem of the Klein-Gordon-Zakharov system in four and more spatial dimensions. Communications on Pure & Applied Analysis, 2016, 15 (6) : 2247-2280. doi: 10.3934/cpaa.2016036

[11]

E. Compaan, N. Tzirakis. Low-regularity global well-posedness for the Klein-Gordon-Schrödinger system on $ \mathbb{R}^+ $. Discrete & Continuous Dynamical Systems - A, 2019, 39 (7) : 3867-3895. doi: 10.3934/dcds.2019156

[12]

Reinhard Racke, Jürgen Saal. Hyperbolic Navier-Stokes equations I: Local well-posedness. Evolution Equations & Control Theory, 2012, 1 (1) : 195-215. doi: 10.3934/eect.2012.1.195

[13]

Hyungjin Huh, Bora Moon. Low regularity well-posedness for Gross-Neveu equations. Communications on Pure & Applied Analysis, 2015, 14 (5) : 1903-1913. doi: 10.3934/cpaa.2015.14.1903

[14]

Takafumi Akahori. Low regularity global well-posedness for the nonlinear Schrödinger equation on closed manifolds. Communications on Pure & Applied Analysis, 2010, 9 (2) : 261-280. doi: 10.3934/cpaa.2010.9.261

[15]

Tarek Saanouni. Global well-posedness of some high-order semilinear wave and Schrödinger type equations with exponential nonlinearity. Communications on Pure & Applied Analysis, 2014, 13 (1) : 273-291. doi: 10.3934/cpaa.2014.13.273

[16]

Hiroyuki Hirayama. Well-posedness and scattering for a system of quadratic derivative nonlinear Schrödinger equations with low regularity initial data. Communications on Pure & Applied Analysis, 2014, 13 (4) : 1563-1591. doi: 10.3934/cpaa.2014.13.1563

[17]

Hartmut Pecher. Low regularity well-posedness for the 3D Klein - Gordon - Schrödinger system. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1081-1096. doi: 10.3934/cpaa.2012.11.1081

[18]

Dan-Andrei Geba, Kenji Nakanishi, Sarada G. Rajeev. Global well-posedness and scattering for Skyrme wave maps. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1923-1933. doi: 10.3934/cpaa.2012.11.1923

[19]

Luc Molinet, Francis Ribaud. On global well-posedness for a class of nonlocal dispersive wave equations. Discrete & Continuous Dynamical Systems - A, 2006, 15 (2) : 657-668. doi: 10.3934/dcds.2006.15.657

[20]

Jinkai Li, Edriss Titi. Global well-posedness of strong solutions to a tropical climate model. Discrete & Continuous Dynamical Systems - A, 2016, 36 (8) : 4495-4516. doi: 10.3934/dcds.2016.36.4495

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (16)
  • HTML views (110)
  • Cited by (0)

Other articles
by authors

[Back to Top]