In this paper we study the following conformally invariant poly-harmonic equation
$ \Delta^mu = -u^\frac{3+2m}{3-2m}\quad\text{in }\mathbb{R}^3,\quad u>0, $
with $ m = 2,3 $. We prove the existence of positive smooth radial solutions with prescribed volume $ \int_{\mathbb{R}^3} u^\frac{6}{3-2m}dx $. We show that the set of all possible values of the volume is a bounded interval $ (0,\Lambda^*] $ for $ m = 2 $, and it is $ (0,\infty) $ for $ m = 3 $. This is in sharp contrast to $ m = 1 $ case in which the volume $ \int_{\mathbb{R}^3} u^\frac{6}{3-2m}dx $ is a fixed value.
Citation: |
[1] |
T. P. Branson, Group representations arising from Lorentz conformal geometry, J. Funct. Anal., 74 (1987), 199-291.
doi: 10.1016/0022-1236(87)90025-5.![]() ![]() ![]() |
[2] |
L. Caffarelli, B. Gidas and J. Spruck, Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth, Comm. Pure Appl. Math., 42 (1989), 271-297.
doi: 10.1002/cpa.3160420304.![]() ![]() ![]() |
[3] |
S-Y. A. Chang and W. Chen, A note on a class of higher order conformally covariant equations, Discrete Contin. Dynam. Systems, 7 (2001), 275-281.
doi: 10.3934/dcds.2001.7.275.![]() ![]() ![]() |
[4] |
Y. S. Choi and X. Xu, Nonlinear biharmonic equations with negative exponents, J. Diff. Equations, 246 (2009), 216-234.
doi: 10.1016/j.jde.2008.06.027.![]() ![]() ![]() |
[5] |
T. V. Duoc and Q. A. Ngô, A note on positive radial solutions of $\Delta^2 u+u^{-q} = 0$ in $ \mathbb{R}^3$ with exactly quadratic growth at infinity, Diff. Int. Equations, 30 (2017), 917-928.
![]() ![]() |
[6] |
T. V. Duoc and Q. A. Ngô, Exact growth at infinity for radial solutions of $\Delta^3u+u^{-q} = 0$ in $\mathbb{ \mathbb{R}}^3$, Preprint (2017), ftp://file.viasm.org/Web/TienAnPham-17/Preprint_1702.pdf.
![]() |
[7] |
A. Farina and A. Ferrero, Existence and stability properties of entire solutions to the polyharmonic equation $(-\Delta u)^m = e^u$ for any $m>1$, Ann. Inst. H. Poincaré Anal. Non Linéaire, 33 (2016), 495-528.
doi: 10.1016/j.anihpc.2014.11.005.![]() ![]() ![]() |
[8] |
X. Feng and X. Xu, Entire solutions of an integral equation in $ \mathbb{R}^5$, ISRN Math. Anal., (2013), Art. ID 384394, 17 pp.
![]() ![]() |
[9] |
I. Guerra, A note on nonlinear biharmonic equations with negative exponents, J. Differential Equations, 253 (2012), 3147-3157.
doi: 10.1016/j.jde.2012.08.037.![]() ![]() ![]() |
[10] |
X. Hunag and D. Ye, Conformal metrics in $\mathbb{R}^{2m}$ with constant $Q$-curvature and arbitrary volume, Calc. Var. Partial Differential Equations, 54 (2015), 3373-3384.
doi: 10.1007/s00526-015-0907-1.![]() ![]() ![]() |
[11] |
A. Hyder, Conformally Euclidean metrics on $ \mathbb{R}^n$ with arbitrary total Q-curvature, Anal. PDE, 10 (2017), 635-652.
doi: 10.2140/apde.2017.10.635.![]() ![]() ![]() |
[12] |
A. Hyder and J. Wei, Non-radial solutions to a biharmonic equation with negative exponent, Preprint (2018), http://www.math.ubc.ca/~ali.hyder/W/HW.pdf.
![]() |
[13] |
B. Lai, A new proof of I. Guerra's results concerning nonlinear biharmonic equations with negative exponents, J. Math. Anal. Appl., 418 (2014), 469-475.
doi: 10.1016/j.jmaa.2014.04.005.![]() ![]() ![]() |
[14] |
Y. Li, Remarks on some conformally invariant integral equations: The method of moving spheres, J. Eur. Math. Soc., 6 (2004), 153-180.
![]() ![]() |
[15] |
C. S. Lin, A classification of solutions of a conformally invariant fourth order equation in $\mathbb{R}^n$, Comment. Math. Helv., 73 (1998), 206-231.
doi: 10.1007/s000140050052.![]() ![]() ![]() |
[16] |
L. Martinazzi, Conformal metrics on $ \mathbb{R}^{2m}$ with constant Q-curvature and large volume, Ann. Inst. H. Poincaré Anal. Non Linéaire, 30 (2013), 969-982.
doi: 10.1016/j.anihpc.2012.12.007.![]() ![]() ![]() |
[17] |
P. J. McKenna and W. Reichel, Radial solutions of singular nonlinear biharmonic equations and applications to conformal geometry, Electron. J. Differential Equations, 37 (2003), 1-13.
![]() ![]() |
[18] |
Q. A. Ngô, Classification of entire solutions of $(-\Delta)^n u+u^{4n-1}=0$ with exact linear growth at infinity in $\mathbb{R}^{2n-1}$, Proc. Amer. Math. Soc., 146 (2018), 2585-2600.
doi: 10.1090/proc/13960.![]() ![]() ![]() |
[19] |
J. Wei and D. Ye, Nonradial solutions for a conformally invariant fourth order equation in $ \mathbb{R}^4$, Calc. Var. Partial Differential Equations, 32 (2008), 373-386.
doi: 10.1007/s00526-007-0145-2.![]() ![]() ![]() |
[20] |
X. Xu, Exact solutions of nonlinear conformally invariant integral equations in $\mathbb{R}^3$, Adv. Math., 194 (2005), 485-503.
doi: 10.1016/j.aim.2004.07.004.![]() ![]() ![]() |
[21] |
X. Xu and P. Yang, On a fourth order equation in $3$-$D$, ESAIM: Control Optim. Calc. Var., 8 (2002), 1029-1042.
doi: 10.1051/cocv:2002023.![]() ![]() ![]() |
[22] |
P. Yang and M. Zhu, On the Paneitz energy on standard three sphere, ESAIM: Control Optim. Calc. Var., 10 (2004), 211-223.
doi: 10.1051/cocv:2004002.![]() ![]() ![]() |