• Previous Article
    Optimal indirect stability of a weakly damped elastic abstract system of second order equations coupled by velocities
  • CPAA Home
  • This Issue
  • Next Article
    Pointwise estimates of solutions to conservation laws with nonlocal dissipation-type terms
September 2019, 18(5): 2819-2833. doi: 10.3934/cpaa.2019126

A symmetry result for elliptic systems in punctured domains

1. 

Dipartimento di Ingegneria Industriale e Scienze Matematiche, Università Politecnica della Marche, Via Brecce Bianche, 60131, Ancona, Italy

2. 

Department of Mathematics and Statistics, University of Western Australia, 35 Stirling Highway, WA 6009 Crawley, Australia

3. 

Dipartimento di Matematica, Università degli Studi di Trento, Via Sommarive 14, 38123, Povo (Trento), Italy

Received  October 2018 Revised  January 2019 Published  April 2019

Fund Project: The authors are members of INdAM/GNAMPA. The first and the third author are partially supported by the INdAM-GNAMPA Project 2018 "Problemi di curvatura relativi ad operatori ellittico-degeneri". The second author is supported by the Australian Research Council Discovery Project 170104880 NEW "Nonlocal Equations at Work"

We consider an elliptic system of equations in a punctured bounded domain. We prove that if the domain is convex in one direction and symmetric with respect to the reflections induced by the normal hyperplane to such a direction, then the solution is necessarily symmetric under this reflection and monotone in the corresponding direction. As a consequence, we prove symmetry results also for a related polyharmonic problem of any order with Navier boundary conditions.

Citation: Stefano Biagi, Enrico Valdinoci, Eugenio Vecchi. A symmetry result for elliptic systems in punctured domains. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2819-2833. doi: 10.3934/cpaa.2019126
References:
[1]

D. H. Armitage and S. J. Gardiner, Classical Potential Theory, Springer-Verlag London, Ltd., London, 2001. doi: 10.1007/978-1-4471-0233-5.

[2]

E. BerchioF. Gazzola and T. Weth, Radial symmetry of positive solutions to nonlinear polyharmonic Dirichlet problems, J. Reine Angew. Math., 620 (2008), 165-183. doi: 10.1515/CRELLE.2008.052.

[3]

H. Berestycki and L. Nirenberg, On the method of moving planes and the sliding method, Bol. Soc. Brasil. Mat. (N. S.), 22 (1991), 1-37. doi: 10.1007/BF01244896.

[4]

L. Caffarelli, Y. Y. Li and L. Nirenberg, Some remarks on singular solutions of nonlinear elliptic equations. Ⅱ. Symmetry and monotonicity via moving planes, Advances in Geometric Analysis, Int. Press, Somerville, MA, 21 (2012), 97–105.

[5]

J. W. Cahn and J. E. Hilliard, Free energy of a nonuniform system. Ⅰ. Interfacial free energy, J. Chem. Phys., 28 (1958), 258-267.

[6]

F. Colasuonno and E. Vecchi, Symmetry in the composite plate problem, Commun. Contemp. Math., 21 (2019) no.2, 1850019, 34 pp. doi: 10.1142/S0219199718500190.

[7]

F. Colasuonno and E. Vecchi, Symmetry and rigidity in the hinged composite plate problem, J. Differential Equations, 266 (2019), 4901-4924. doi: 10.1016/j.jde.2018.10.011.

[8]

L. Damascelli and F. Pacella, Symmetry results for cooperative elliptic systems via linearization, SIAM J. Math. Anal., 45 (2013), 1003-1026. doi: 10.1137/110853534.

[9]

D. G. De Figueiredo, Monotonicity and symmetry of solutions of elliptic systems in general domains, NoDEA Nonlinear Differential Equations Appl., 1 (1994), 119-123. doi: 10.1007/BF01193947.

[10]

F. EspositoA. Farina and B. Sciunzi, Qualitative properties of singular solutions to semilinear elliptic problems, J. Differential Equations, 265 (2018), 1962-1983. doi: 10.1016/j.jde.2018.04.030.

[11]

A. FerreroF. Gazzola and T. Weth, Positivity, symmetry and uniqueness for minimizers of second-order Sobolev inequalities, Ann. Mat. Pura Appl., 186 (2007), 565-578. doi: 10.1007/s10231-006-0019-9.

[12]

F. Gazzola, H. -C. Grunau and G. Sweers, Polyharmonic Boundary Value Problems, Springer-Verlag, Berlin, 2010, 1991. doi: 10.1007/978-3-642-12245-3.

[13]

B. GidasB, W. M. Ni and L. Nirenberg, Symmetry and related properties via the maximum principle, Comm. Math. Phys., 68 (1979), 209-243.

[14]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, 2001.

[15]

L. MontoroF. Punzo and B. Sciunzi, Qualitative properties of singular solutions to nonlocal problems, Ann. Mat. Pura Appl., 197 (2018), 941-964. doi: 10.1007/s10231-017-0710-z.

[16]

P. Pizzetti, Sulla media dei valori che una funzione dei punti dello spazio assume alla superficie di una sfera, Rendiconti Lincei, 18 (1909), 182-185.

[17]

B. Sciunzi, On the moving plane method for singular solutions to semilinear elliptic equations, J. Math. Pures Appl., 108 (2017), 111-123. doi: 10.1016/j.matpur.2016.10.012.

[18]

J. Serrin, A symmetry problem in potential theory, Arch. Rational Mech. Anal., 43 (1971), 304-318. doi: 10.1007/BF00250468.

[19]

S. Terracini, On positive entire solutions to a class of equations with a singular coefficient and critical exponent, Adv. Differential Equations, 1 (1996), 241-264.

[20]

W. C. Troy, Symmetry properties in systems of semilinear elliptic equations, J. Differential Equations, 42 (1981), 400-413. doi: 10.1016/0022-0396(81)90113-3.

show all references

References:
[1]

D. H. Armitage and S. J. Gardiner, Classical Potential Theory, Springer-Verlag London, Ltd., London, 2001. doi: 10.1007/978-1-4471-0233-5.

[2]

E. BerchioF. Gazzola and T. Weth, Radial symmetry of positive solutions to nonlinear polyharmonic Dirichlet problems, J. Reine Angew. Math., 620 (2008), 165-183. doi: 10.1515/CRELLE.2008.052.

[3]

H. Berestycki and L. Nirenberg, On the method of moving planes and the sliding method, Bol. Soc. Brasil. Mat. (N. S.), 22 (1991), 1-37. doi: 10.1007/BF01244896.

[4]

L. Caffarelli, Y. Y. Li and L. Nirenberg, Some remarks on singular solutions of nonlinear elliptic equations. Ⅱ. Symmetry and monotonicity via moving planes, Advances in Geometric Analysis, Int. Press, Somerville, MA, 21 (2012), 97–105.

[5]

J. W. Cahn and J. E. Hilliard, Free energy of a nonuniform system. Ⅰ. Interfacial free energy, J. Chem. Phys., 28 (1958), 258-267.

[6]

F. Colasuonno and E. Vecchi, Symmetry in the composite plate problem, Commun. Contemp. Math., 21 (2019) no.2, 1850019, 34 pp. doi: 10.1142/S0219199718500190.

[7]

F. Colasuonno and E. Vecchi, Symmetry and rigidity in the hinged composite plate problem, J. Differential Equations, 266 (2019), 4901-4924. doi: 10.1016/j.jde.2018.10.011.

[8]

L. Damascelli and F. Pacella, Symmetry results for cooperative elliptic systems via linearization, SIAM J. Math. Anal., 45 (2013), 1003-1026. doi: 10.1137/110853534.

[9]

D. G. De Figueiredo, Monotonicity and symmetry of solutions of elliptic systems in general domains, NoDEA Nonlinear Differential Equations Appl., 1 (1994), 119-123. doi: 10.1007/BF01193947.

[10]

F. EspositoA. Farina and B. Sciunzi, Qualitative properties of singular solutions to semilinear elliptic problems, J. Differential Equations, 265 (2018), 1962-1983. doi: 10.1016/j.jde.2018.04.030.

[11]

A. FerreroF. Gazzola and T. Weth, Positivity, symmetry and uniqueness for minimizers of second-order Sobolev inequalities, Ann. Mat. Pura Appl., 186 (2007), 565-578. doi: 10.1007/s10231-006-0019-9.

[12]

F. Gazzola, H. -C. Grunau and G. Sweers, Polyharmonic Boundary Value Problems, Springer-Verlag, Berlin, 2010, 1991. doi: 10.1007/978-3-642-12245-3.

[13]

B. GidasB, W. M. Ni and L. Nirenberg, Symmetry and related properties via the maximum principle, Comm. Math. Phys., 68 (1979), 209-243.

[14]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, 2001.

[15]

L. MontoroF. Punzo and B. Sciunzi, Qualitative properties of singular solutions to nonlocal problems, Ann. Mat. Pura Appl., 197 (2018), 941-964. doi: 10.1007/s10231-017-0710-z.

[16]

P. Pizzetti, Sulla media dei valori che una funzione dei punti dello spazio assume alla superficie di una sfera, Rendiconti Lincei, 18 (1909), 182-185.

[17]

B. Sciunzi, On the moving plane method for singular solutions to semilinear elliptic equations, J. Math. Pures Appl., 108 (2017), 111-123. doi: 10.1016/j.matpur.2016.10.012.

[18]

J. Serrin, A symmetry problem in potential theory, Arch. Rational Mech. Anal., 43 (1971), 304-318. doi: 10.1007/BF00250468.

[19]

S. Terracini, On positive entire solutions to a class of equations with a singular coefficient and critical exponent, Adv. Differential Equations, 1 (1996), 241-264.

[20]

W. C. Troy, Symmetry properties in systems of semilinear elliptic equations, J. Differential Equations, 42 (1981), 400-413. doi: 10.1016/0022-0396(81)90113-3.

[1]

Giuseppe Riey, Berardino Sciunzi. One dimensional symmetry of solutions to some anisotropic quasilinear elliptic equations in the plane. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1157-1166. doi: 10.3934/cpaa.2012.11.1157

[2]

Serena Dipierro. Geometric inequalities and symmetry results for elliptic systems. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3473-3496. doi: 10.3934/dcds.2013.33.3473

[3]

Claudianor O. Alves, Giovany M. Figueiredo, Marcelo F. Furtado. Multiplicity of solutions for elliptic systems via local Mountain Pass method. Communications on Pure & Applied Analysis, 2009, 8 (6) : 1745-1758. doi: 10.3934/cpaa.2009.8.1745

[4]

Hwai-Chiuan Wang. Stability and symmetry breaking of solutions of semilinear elliptic equations. Conference Publications, 2005, 2005 (Special) : 886-894. doi: 10.3934/proc.2005.2005.886

[5]

Pei Ma, Yan Li, Jihui Zhang. Symmetry and nonexistence of positive solutions for fractional systems. Communications on Pure & Applied Analysis, 2018, 17 (3) : 1053-1070. doi: 10.3934/cpaa.2018051

[6]

Xavier Cabré. Elliptic PDE's in probability and geometry: Symmetry and regularity of solutions. Discrete & Continuous Dynamical Systems - A, 2008, 20 (3) : 425-457. doi: 10.3934/dcds.2008.20.425

[7]

Shiren Zhu, Xiaoli Chen, Jianfu Yang. Regularity, symmetry and uniqueness of positive solutions to a nonlinear elliptic system. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2685-2696. doi: 10.3934/cpaa.2013.12.2685

[8]

Sara Barile, Addolorata Salvatore. Radial solutions of semilinear elliptic equations with broken symmetry on unbounded domains. Conference Publications, 2013, 2013 (special) : 41-49. doi: 10.3934/proc.2013.2013.41

[9]

Alberto Farina. Some symmetry results for entire solutions of an elliptic system arising in phase separation. Discrete & Continuous Dynamical Systems - A, 2014, 34 (6) : 2505-2511. doi: 10.3934/dcds.2014.34.2505

[10]

Xianjin Chen, Jianxin Zhou. A local min-orthogonal method for multiple solutions of strongly coupled elliptic systems. Conference Publications, 2009, 2009 (Special) : 151-160. doi: 10.3934/proc.2009.2009.151

[11]

Wenxiong Chen, Congming Li. Radial symmetry of solutions for some integral systems of Wolff type. Discrete & Continuous Dynamical Systems - A, 2011, 30 (4) : 1083-1093. doi: 10.3934/dcds.2011.30.1083

[12]

Ran Zhuo, Yan Li. Nonexistence and symmetry of solutions for Schrödinger systems involving fractional Laplacian. Discrete & Continuous Dynamical Systems - A, 2019, 39 (3) : 1595-1611. doi: 10.3934/dcds.2019071

[13]

Alberto Farina. Symmetry of components, Liouville-type theorems and classification results for some nonlinear elliptic systems. Discrete & Continuous Dynamical Systems - A, 2015, 35 (12) : 5869-5877. doi: 10.3934/dcds.2015.35.5869

[14]

Cristina Tarsi. Perturbation from symmetry and multiplicity of solutions for elliptic problems with subcritical exponential growth in $\mathbb{R} ^2$. Communications on Pure & Applied Analysis, 2008, 7 (2) : 445-456. doi: 10.3934/cpaa.2008.7.445

[15]

Florin Catrina, Zhi-Qiang Wang. Asymptotic uniqueness and exact symmetry of k-bump solutions for a class of degenerate elliptic problems. Conference Publications, 2001, 2001 (Special) : 80-87. doi: 10.3934/proc.2001.2001.80

[16]

Jian Hao, Zhilin Li, Sharon R. Lubkin. An augmented immersed interface method for moving structures with mass. Discrete & Continuous Dynamical Systems - B, 2012, 17 (4) : 1175-1184. doi: 10.3934/dcdsb.2012.17.1175

[17]

Rumei Zhang, Jin Chen, Fukun Zhao. Multiple solutions for superlinear elliptic systems of Hamiltonian type. Discrete & Continuous Dynamical Systems - A, 2011, 30 (4) : 1249-1262. doi: 10.3934/dcds.2011.30.1249

[18]

Weichung Wang, Tsung-Fang Wu, Chien-Hsiang Liu. On the multiple spike solutions for singularly perturbed elliptic systems. Discrete & Continuous Dynamical Systems - B, 2013, 18 (1) : 237-258. doi: 10.3934/dcdsb.2013.18.237

[19]

Emmanuel Hebey, Jérôme Vétois. Multiple solutions for critical elliptic systems in potential form. Communications on Pure & Applied Analysis, 2008, 7 (3) : 715-741. doi: 10.3934/cpaa.2008.7.715

[20]

Cheng-Hsiung Hsu, Ting-Hui Yang. Traveling plane wave solutions of delayed lattice differential systems in competitive Lotka-Volterra type. Discrete & Continuous Dynamical Systems - B, 2010, 14 (1) : 111-128. doi: 10.3934/dcdsb.2010.14.111

2017 Impact Factor: 0.884

Metrics

  • PDF downloads (27)
  • HTML views (127)
  • Cited by (0)

Other articles
by authors

[Back to Top]