• Previous Article
    Global bifurcation and exact multiplicity of positive solutions for the one-dimensional Minkowski-curvature problem with sign-changing nonlinearity
  • CPAA Home
  • This Issue
  • Next Article
    The effect of nonlocal term on the superlinear elliptic equations in $ \mathbb{R}^{N} $
November  2019, 18(6): 3243-3265. doi: 10.3934/cpaa.2019146

Translating solutions of non-parametric mean curvature flows with capillary-type boundary value problems

1. 

School of Mathematical Sciences, University of Science and Technology of China, Hefei, 230026, China

2. 

Department of Mathematics, Shanghai Normal University, Shanghai, 200234, China

* Corresponding author

Received  December 2018 Revised  February 2019 Published  May 2019

Fund Project: Research of the third author was supported by NSFC. No.11601311 and the fund of Shanghai Normal University.

In this note, we study the mean curvature flow and the prescribed mean curvature type equation with general capillary-type boundary condition, which is $ u_{\nu} = -\phi(x)(1+|Du|^2)^\frac{1-q}{2} $ for any parameter $ q>0 $. Using the maximum principle, we prove the gradient estimates for the solutions of such a class of boundary value problems. As a consequence, we obtain the corresponding existence theorem for a class of mean curvature equations. In addition, we study the related additive eigenvalue problem for general boundary value problems and describe the asymptotic behavior of the solution at infinity time. The originality of the paper lies in the range $ 0<q<1 $, since there are no any related results before. For parabolic case, we generalize the result of Ma-Wang-Wei [25] to any $ q>0 $. And in elliptic case, we generalize the results in [32] to any $ q\ge 0 $ and to any bounded smooth domain.

Citation: Jun Wang, Wei Wei, Jinju Xu. Translating solutions of non-parametric mean curvature flows with capillary-type boundary value problems. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3243-3265. doi: 10.3934/cpaa.2019146
References:
[1]

S. J. Altschuler and L. F. Wu, Translating surfaces of the non-parametric mean curvature flow with prescribed contact angle, Calc. Var., 2 (1994), 101-111.  doi: 10.1007/BF01234317.  Google Scholar

[2]

B. Andrews and J. Clutterbuck, Time-interior gradient estimates for quasilinear parabolic equations, Indiana Univ. Math. J., 58 (2009), 351-380.  doi: 10.1512/iumj.2009.58.3756.  Google Scholar

[3]

G. BarlesH. Ishii and H. Mitake, On the large time behavior of solutions of Hamilton-Jacobi equations associated with nonlinear boundary conditions, Arch. Rational Mech. Anal., 204 (2012), 515-558.  doi: 10.1007/s00205-011-0484-1.  Google Scholar

[4]

G. Barles and H. Mitake, A PDE approach to large-time asymptotics for boundary value problems for nonconvex Hamilton-Jacobi equations, Comm. in Partial Differential Equations, 37 (2012), 136-168.  doi: 10.1080/03605302.2011.553645.  Google Scholar

[5]

K. A. Brakke, The Motion of A Surface by Its Mean Curvature, Ph.D. Thesis, Princeton University, 1975.  Google Scholar

[6]

P. Concus and R. Finn, On capillary free surfaces in the absence of gravity, Acta Math., 132 (1974), 177-198.  doi: 10.1007/BF02392113.  Google Scholar

[7]

C. M. EllottY. Giga and S. Goto, Dynamic boundary conditions for Hamilton-Jacobi equations, SIAM J. Math. Anal., 34 (2003), 861-881.  doi: 10.1137/S003614100139957X.  Google Scholar

[8]

R.Finn, Equilibrium Capillary Surfaces, Fundamental Principle of mathematics, 284, Springer-Verlag, New York, 1986. doi: 10.1007/978-1-4613-8584-4.  Google Scholar

[9]

C. Gerhardt, Global regularity of the solutions to the capillarity problem, Ann. Sci. Norm. Sup. Piss Ser. (4), 3 (1976), 157–175.  Google Scholar

[10]

E. Giusti, On the equation of surfaces of prescribed mean curvature: existence and uniqueness without boundary conditions, Invent. Math., 46 (1978), 111-137.  doi: 10.1007/BF01393250.  Google Scholar

[11]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, 2$^{nd}$ edition, Springer-Verlag Berlin, 2001.  Google Scholar

[12]

B. Guan, Mean curvature motion of non-parametric hypersurfaces with contact angle condition, in Elliptic and parabolic methods in geometry (Minneapolis, MN, 1994), AK Peters, Wellesley, MA, (1996), 47–56.  Google Scholar

[13]

G. Huisken, Flow by mean curvature of convex surfaces into spheres, J. Differential Geom., 20 (1984), 237-266.   Google Scholar

[14]

G. Huisken, Contracting convex hypersurfaces in Riemannian manifolds by their mean curvature, Invent. Math., 84 (1986), 463-480.  doi: 10.1007/BF01388742.  Google Scholar

[15]

G. Huisken, Non-parametric mean curvature evolution with boundary conditions, J. Differ. Equations., 77 (1989), 369-378.  doi: 10.1016/0022-0396(89)90149-6.  Google Scholar

[16]

L. Hormander, The boundary problems of physical geodesy, Arch. Rational Mech. Anal., 62 (1976), 1-52.  doi: 10.1007/BF00251855.  Google Scholar

[17]

H. Ishii, A short introduction to viscosity solutions and the large time behavior of solutions: approximations, numerical analysis and applications, in Lecture Notes in Math., 2074, Springer, Heidelberg, 111–249, 2013. doi: 10.1007/978-3-642-36433-4_3.  Google Scholar

[18]

N. J. Korevaar, Maximum principle gradient estimates for the capillary problem, Comm. in Partial Differential Equations, 13 (1988), 1-31.  doi: 10.1080/03605308808820536.  Google Scholar

[19]

G. M. Lieberman, Gradient estimates for capillary-type problems via the maximum principle, Commun. in Partial Differential Equations, 13 (1988), 33-59.  doi: 10.1080/03605308808820537.  Google Scholar

[20]

G. M. Lieberman, Oblique Boundary Value Problems for Elliptic Equations, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2013. doi: 10.1142/8679.  Google Scholar

[21]

G. M. Lieberman and N. S. Trudinger, Nonlinear oblique boundary value problems for nonlinear elliptic equations, Transactions of the American Mathematical Society, 295 (1986), 509-546.  doi: 10.2307/2000050.  Google Scholar

[22]

P. L. Lions, Neumann type boundary conditions for Hamilton-Jacobi equations, Duke Mathematical Journal, 52 (1985), 793-820.  doi: 10.1215/S0012-7094-85-05242-1.  Google Scholar

[23]

H. Mitake, The large-time behavior of solutions of the Cauchy-Dirichlet problem for Hamilton- Jacobi equations, NoDEA Nonlinear Differential Equations App., 15 (2008), 347-362.  doi: 10.1007/s00030-008-7043-y.  Google Scholar

[24]

H. Mitake, Asymptotic solutions of Hamilton-Jacobi equations with state constraints, Appl. Math. Optim., 58 (2008), 393-410.  doi: 10.1007/s00245-008-9041-1.  Google Scholar

[25]

X. N. MaP. H. Wang and W. Wei, Mean curvature equation and mean curvature type flow with non-zero Neumann boundary conditions on strictly convex domains, J. Func. Anal., 274 (2018), 252-277.  doi: 10.1016/j.jfa.2017.10.002.  Google Scholar

[26]

X. N. Ma and J. J. Xu, Gradient estimates of mean curvature equations with Neumann boundary condition, Advances in Mathematics, 290 (2016), 1010-1039.  doi: 10.1016/j.aim.2015.10.031.  Google Scholar

[27]

O. C. Schnürer and R. S. Hartmut, Translating solutions for Gauss curvature flows with Neumann boundary conditions, Pacific J. Math., 213 (2004), 89-109.  doi: 10.2140/pjm.2004.213.89.  Google Scholar

[28]

L. Simon and J. Spruck, Existence and regularity of a capillary surface with prescribed contact angle, Arch. Rational Mech. Anal., 61 (1976), 19-34.  doi: 10.1007/BF00251860.  Google Scholar

[29]

J. Spruck, On the existence of a capillary surface with prescribed contact angle, Comm. Pure Appl. Math., 28 (1975), 189-200.  doi: 10.1002/cpa.3160280202.  Google Scholar

[30]

N. N. Ural'tseva, The solvability of the capillary problem, (Russian) Vestnik Leningrad. Univ. No. 19 Mat. Meh. Astronom.Vyp., 4 (1973), 54–64.  Google Scholar

[31]

X. J. Wang, Interior gradient estimates for mean curvature equations, Math. Z., 228 (1998), 73-81.  doi: 10.1007/PL00004604.  Google Scholar

[32]

J. J. Xu, A new proof of gradient estimates for mean curvature equations with oblique boundary conditions, Commun. Pure Appl. Anal., 15 (2016), 1719-1742.  doi: 10.3934/cpaa.2016010.  Google Scholar

[33]

J. J. Xu, Mean curvature flow of graphs with Neumann boundary conditions, Manuscripta Mathematica, 158 (2019), 75-84.  doi: 10.1007/s00229-018-1007-2.  Google Scholar

show all references

References:
[1]

S. J. Altschuler and L. F. Wu, Translating surfaces of the non-parametric mean curvature flow with prescribed contact angle, Calc. Var., 2 (1994), 101-111.  doi: 10.1007/BF01234317.  Google Scholar

[2]

B. Andrews and J. Clutterbuck, Time-interior gradient estimates for quasilinear parabolic equations, Indiana Univ. Math. J., 58 (2009), 351-380.  doi: 10.1512/iumj.2009.58.3756.  Google Scholar

[3]

G. BarlesH. Ishii and H. Mitake, On the large time behavior of solutions of Hamilton-Jacobi equations associated with nonlinear boundary conditions, Arch. Rational Mech. Anal., 204 (2012), 515-558.  doi: 10.1007/s00205-011-0484-1.  Google Scholar

[4]

G. Barles and H. Mitake, A PDE approach to large-time asymptotics for boundary value problems for nonconvex Hamilton-Jacobi equations, Comm. in Partial Differential Equations, 37 (2012), 136-168.  doi: 10.1080/03605302.2011.553645.  Google Scholar

[5]

K. A. Brakke, The Motion of A Surface by Its Mean Curvature, Ph.D. Thesis, Princeton University, 1975.  Google Scholar

[6]

P. Concus and R. Finn, On capillary free surfaces in the absence of gravity, Acta Math., 132 (1974), 177-198.  doi: 10.1007/BF02392113.  Google Scholar

[7]

C. M. EllottY. Giga and S. Goto, Dynamic boundary conditions for Hamilton-Jacobi equations, SIAM J. Math. Anal., 34 (2003), 861-881.  doi: 10.1137/S003614100139957X.  Google Scholar

[8]

R.Finn, Equilibrium Capillary Surfaces, Fundamental Principle of mathematics, 284, Springer-Verlag, New York, 1986. doi: 10.1007/978-1-4613-8584-4.  Google Scholar

[9]

C. Gerhardt, Global regularity of the solutions to the capillarity problem, Ann. Sci. Norm. Sup. Piss Ser. (4), 3 (1976), 157–175.  Google Scholar

[10]

E. Giusti, On the equation of surfaces of prescribed mean curvature: existence and uniqueness without boundary conditions, Invent. Math., 46 (1978), 111-137.  doi: 10.1007/BF01393250.  Google Scholar

[11]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, 2$^{nd}$ edition, Springer-Verlag Berlin, 2001.  Google Scholar

[12]

B. Guan, Mean curvature motion of non-parametric hypersurfaces with contact angle condition, in Elliptic and parabolic methods in geometry (Minneapolis, MN, 1994), AK Peters, Wellesley, MA, (1996), 47–56.  Google Scholar

[13]

G. Huisken, Flow by mean curvature of convex surfaces into spheres, J. Differential Geom., 20 (1984), 237-266.   Google Scholar

[14]

G. Huisken, Contracting convex hypersurfaces in Riemannian manifolds by their mean curvature, Invent. Math., 84 (1986), 463-480.  doi: 10.1007/BF01388742.  Google Scholar

[15]

G. Huisken, Non-parametric mean curvature evolution with boundary conditions, J. Differ. Equations., 77 (1989), 369-378.  doi: 10.1016/0022-0396(89)90149-6.  Google Scholar

[16]

L. Hormander, The boundary problems of physical geodesy, Arch. Rational Mech. Anal., 62 (1976), 1-52.  doi: 10.1007/BF00251855.  Google Scholar

[17]

H. Ishii, A short introduction to viscosity solutions and the large time behavior of solutions: approximations, numerical analysis and applications, in Lecture Notes in Math., 2074, Springer, Heidelberg, 111–249, 2013. doi: 10.1007/978-3-642-36433-4_3.  Google Scholar

[18]

N. J. Korevaar, Maximum principle gradient estimates for the capillary problem, Comm. in Partial Differential Equations, 13 (1988), 1-31.  doi: 10.1080/03605308808820536.  Google Scholar

[19]

G. M. Lieberman, Gradient estimates for capillary-type problems via the maximum principle, Commun. in Partial Differential Equations, 13 (1988), 33-59.  doi: 10.1080/03605308808820537.  Google Scholar

[20]

G. M. Lieberman, Oblique Boundary Value Problems for Elliptic Equations, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2013. doi: 10.1142/8679.  Google Scholar

[21]

G. M. Lieberman and N. S. Trudinger, Nonlinear oblique boundary value problems for nonlinear elliptic equations, Transactions of the American Mathematical Society, 295 (1986), 509-546.  doi: 10.2307/2000050.  Google Scholar

[22]

P. L. Lions, Neumann type boundary conditions for Hamilton-Jacobi equations, Duke Mathematical Journal, 52 (1985), 793-820.  doi: 10.1215/S0012-7094-85-05242-1.  Google Scholar

[23]

H. Mitake, The large-time behavior of solutions of the Cauchy-Dirichlet problem for Hamilton- Jacobi equations, NoDEA Nonlinear Differential Equations App., 15 (2008), 347-362.  doi: 10.1007/s00030-008-7043-y.  Google Scholar

[24]

H. Mitake, Asymptotic solutions of Hamilton-Jacobi equations with state constraints, Appl. Math. Optim., 58 (2008), 393-410.  doi: 10.1007/s00245-008-9041-1.  Google Scholar

[25]

X. N. MaP. H. Wang and W. Wei, Mean curvature equation and mean curvature type flow with non-zero Neumann boundary conditions on strictly convex domains, J. Func. Anal., 274 (2018), 252-277.  doi: 10.1016/j.jfa.2017.10.002.  Google Scholar

[26]

X. N. Ma and J. J. Xu, Gradient estimates of mean curvature equations with Neumann boundary condition, Advances in Mathematics, 290 (2016), 1010-1039.  doi: 10.1016/j.aim.2015.10.031.  Google Scholar

[27]

O. C. Schnürer and R. S. Hartmut, Translating solutions for Gauss curvature flows with Neumann boundary conditions, Pacific J. Math., 213 (2004), 89-109.  doi: 10.2140/pjm.2004.213.89.  Google Scholar

[28]

L. Simon and J. Spruck, Existence and regularity of a capillary surface with prescribed contact angle, Arch. Rational Mech. Anal., 61 (1976), 19-34.  doi: 10.1007/BF00251860.  Google Scholar

[29]

J. Spruck, On the existence of a capillary surface with prescribed contact angle, Comm. Pure Appl. Math., 28 (1975), 189-200.  doi: 10.1002/cpa.3160280202.  Google Scholar

[30]

N. N. Ural'tseva, The solvability of the capillary problem, (Russian) Vestnik Leningrad. Univ. No. 19 Mat. Meh. Astronom.Vyp., 4 (1973), 54–64.  Google Scholar

[31]

X. J. Wang, Interior gradient estimates for mean curvature equations, Math. Z., 228 (1998), 73-81.  doi: 10.1007/PL00004604.  Google Scholar

[32]

J. J. Xu, A new proof of gradient estimates for mean curvature equations with oblique boundary conditions, Commun. Pure Appl. Anal., 15 (2016), 1719-1742.  doi: 10.3934/cpaa.2016010.  Google Scholar

[33]

J. J. Xu, Mean curvature flow of graphs with Neumann boundary conditions, Manuscripta Mathematica, 158 (2019), 75-84.  doi: 10.1007/s00229-018-1007-2.  Google Scholar

[1]

Zhengchao Ji. Cylindrical estimates for mean curvature flow in hyperbolic spaces. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1199-1211. doi: 10.3934/cpaa.2021016

[2]

Feng Luo. A combinatorial curvature flow for compact 3-manifolds with boundary. Electronic Research Announcements, 2005, 11: 12-20.

[3]

Hui Yang, Yuzhu Han. Initial boundary value problem for a strongly damped wave equation with a general nonlinearity. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021019

[4]

Amru Hussein, Martin Saal, Marc Wrona. Primitive equations with horizontal viscosity: The initial value and The time-periodic problem for physical boundary conditions. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3063-3092. doi: 10.3934/dcds.2020398

[5]

Matthias Erbar, Jan Maas. Gradient flow structures for discrete porous medium equations. Discrete & Continuous Dynamical Systems, 2014, 34 (4) : 1355-1374. doi: 10.3934/dcds.2014.34.1355

[6]

Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Existence results and stability analysis for a nonlinear fractional boundary value problem on a circular ring with an attached edge : A study of fractional calculus on metric graph. Networks & Heterogeneous Media, 2021, 16 (2) : 155-185. doi: 10.3934/nhm.2021003

[7]

Xinqun Mei, Jundong Zhou. The interior gradient estimate of prescribed Hessian quotient curvature equation in the hyperbolic space. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1187-1198. doi: 10.3934/cpaa.2021012

[8]

Annalisa Cesaroni, Valerio Pagliari. Convergence of nonlocal geometric flows to anisotropic mean curvature motion. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021065

[9]

Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213

[10]

M. Mahalingam, Parag Ravindran, U. Saravanan, K. R. Rajagopal. Two boundary value problems involving an inhomogeneous viscoelastic solid. Discrete & Continuous Dynamical Systems - S, 2017, 10 (6) : 1351-1373. doi: 10.3934/dcdss.2017072

[11]

Oleksandr Boichuk, Victor Feruk. Boundary-value problems for weakly singular integral equations. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021094

[12]

Yang Zhang. A free boundary problem of the cancer invasion. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021092

[13]

Andrea Cianchi, Adele Ferone. Improving sharp Sobolev type inequalities by optimal remainder gradient norms. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1363-1386. doi: 10.3934/cpaa.2012.11.1363

[14]

Fritz Gesztesy, Helge Holden, Johanna Michor, Gerald Teschl. The algebro-geometric initial value problem for the Ablowitz-Ladik hierarchy. Discrete & Continuous Dynamical Systems, 2010, 26 (1) : 151-196. doi: 10.3934/dcds.2010.26.151

[15]

Guido De Philippis, Antonio De Rosa, Jonas Hirsch. The area blow up set for bounded mean curvature submanifolds with respect to elliptic surface energy functionals. Discrete & Continuous Dynamical Systems, 2019, 39 (12) : 7031-7056. doi: 10.3934/dcds.2019243

[16]

Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261

[17]

Fioralba Cakoni, Pu-Zhao Kow, Jenn-Nan Wang. The interior transmission eigenvalue problem for elastic waves in media with obstacles. Inverse Problems & Imaging, 2021, 15 (3) : 445-474. doi: 10.3934/ipi.2020075

[18]

Chonghu Guan, Xun Li, Rui Zhou, Wenxin Zhou. Free boundary problem for an optimal investment problem with a borrowing constraint. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021049

[19]

Hongjie Dong, Xinghong Pan. On conormal derivative problem for parabolic equations with Dini mean oscillation coefficients. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021049

[20]

Kuan-Hsiang Wang. An eigenvalue problem for nonlinear Schrödinger-Poisson system with steep potential well. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021030

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (331)
  • HTML views (215)
  • Cited by (0)

Other articles
by authors

[Back to Top]