November  2019, 18(6): 3337-3349. doi: 10.3934/cpaa.2019150

Almost periodicity analysis for a delayed Nicholson's blowflies model with nonlinear density-dependent mortality term

1. 

School of Mathematics and Statistics, Changsha University of Science and Technology, Changsha 410114, Hunan, China

2. 

Hunan Provincial Key Laboratory of Mathematical Modeling, and Analysis in Engineering, Changsha 410114, Hunan, China

* Corresponding author

Received  October 2018 Revised  February 2019 Published  May 2019

Fund Project: The work is partially supported by the National Natural Science Foundation of China (Nos.71471020, 11771059, 51839002); Hunan Provincial Natural Science Foundation of China (No. 2016JJ1001); Scientific Research Fund of Hunan Provincial Education Department (Nos. 15A003, 16C0036).

This paper mainly investigates a class of almost periodic Nicholson's blowflies model involving a nonlinear density-dependent mortality term and time-varying delays. Combining Lyapunov function method and differential inequality approach, some novel assertions are established to guarantee the existence and exponential stability of positive almost periodic solutions for the addressed model, which generalize and refine the corresponding results in some recent published literatures. Particularly, an example and its numerical simulations are given to support the proposed approach.

Citation: Chuangxia Huang, Hua Zhang, Lihong Huang. Almost periodicity analysis for a delayed Nicholson's blowflies model with nonlinear density-dependent mortality term. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3337-3349. doi: 10.3934/cpaa.2019150
References:
[1]

A. M. Fink, Almost Periodic Differential Equations, Lecture Notes in Mathematics, Vol. 377, Springer-Verlag, Berlin, 1974.  Google Scholar

[2]

C. Huang and H. Zhang, Periodicity of non-autonomous inertial neural networks involving proportional delays and non-reduced order method, International Journal of Biomathematics, 12 (2019), 1950016. doi: 10.1142/S1793524519500165.  Google Scholar

[3] C. Zhang, Almost Periodic Type Functions and Ergodicity, Kluwer Academic/Science Press, Beijing, 2003.  doi: 10.1007/978-94-007-1073-3.  Google Scholar
[4]

T. M. Touaoula, Global stability for a class of functional differential equations (Application to Nicholson's blowflies and Mackey-Glass models), Discrete & Continuous Dynamical Systems -A, 38 (2018), 4391-4419.  doi: 10.3934/dcds.2018191.  Google Scholar

[5]

S. Chen and J. Yu, Stability and bifurcation on predator-prey systems with nonlocal prey competition, Discrete & Continuous Dynamical Systems -A, 38 (2018), 43-62.  doi: 10.3934/dcds.2018002.  Google Scholar

[6]

T. Shibata, Global behavior of bifurcation curves for the nonlinear eigenvalue problems with periodic nonlinear terms, Communications on Pure & Applied Analysis, 17 (2018), 2139-2147.  doi: 10.3934/cpaa.2018102.  Google Scholar

[7]

C. HuangY. QiaoL. Huang and R. Agarwal, Dynamical behaviors of a food-chain model with stage structure and time delays, Advances in Difference Equations, 186 (2018), 1-26.  doi: 10.1186/s13662-018-1589-8.  Google Scholar

[8]

Z. YangC. Huang and X. Zou, Effect of impulsive controls in a model system for age-structured population over a patchy environment, Journal of Mathematical Biology, 76 (2018), 1387-1419.  doi: 10.1007/s00285-017-1172-z.  Google Scholar

[9]

C. HuangZ. YangT. Yi and X. Zou, On the basins of attraction for a class of delay differential equations with non-monotone bistable nonlinearities, Journal of Differential Equations, 256 (2014), 2101-2114.  doi: 10.1016/j.jde.2013.12.015.  Google Scholar

[10]

B. Liu, Global exponential stability of positive periodic solutions for a delayed Nicholsons blowflies model, Journal of Mathematical Analysis and Applications, 412 (2014), 212-221.  doi: 10.1016/j.jmaa.2013.10.049.  Google Scholar

[11]

B. Liu, New results on global exponential stability of almost periodic solutions for a delayed Nicholson blowflies model, Annales Polonici Mathematici, 113 (2015), 191-208.  doi: 10.4064/ap113-2-6.  Google Scholar

[12]

W. Xiong, New results on positive pseudo-almost periodic solutions for a delayed Nicholson's blowflies model, Nonlinear Dynamics, 85 (2016), 563-571.  doi: 10.1007/s11071-016-2706-4.  Google Scholar

[13]

Y. Xu, New stability theorem for periodic Nicholson's model with mortality term, Applied Mathematics Letters, (2019). doi: 10.1016/j.aml.2019.02.021.  Google Scholar

[14]

B. Liu, Almost periodic solutions for a delayed Nicholson's blowflies model with a nonlinear density-dependent mortality term, Advances in Difference Equations, 72 (2014), 1-16.  doi: 10.1186/1687-1847-2014-72.  Google Scholar

[15]

B. Liu, Positive periodic solutions for a nonlinear density-dependent mortality Nicholson's blowflies model, Kodai Mathematical Journal, 37 (2014), 157-173.  doi: 10.2996/kmj/1396008252.  Google Scholar

[16]

L. Yao, Dynamics of Nicholson's blowflies models with a nonlinear density-dependent mortality, Applied Mathematical Modelling, 64 (2018), 185-195.  doi: 10.1016/j.apm.2018.07.007.  Google Scholar

[17]

Y. Tang, Global attractivity of asymptotically almost periodic Nicholson's blowflies models with a nonlinear density-dependent mortality term, International Journal of Biomathematics, 11 (2018), 1850079. doi: 10.1142/S1793524518500791.  Google Scholar

[18]

Y. Xu, Existence and global exponential stability of positive almost periodic solutions for a delayed Nicholson's blowflies model, Journal of the Korean Mathematical Society, 51 (2014), 473-493.  doi: 10.4134/JKMS.2014.51.3.473.  Google Scholar

[19]

W. Chen and W. Wang, Almost periodic solutions for a delayed Nicholson's blowflies system with nonlinear density-dependent mortality terms and patch structure, Advances in Difference Equations, 205 (2014), 1-19.  doi: 10.1186/1687-1847-2014-205.  Google Scholar

[20]

P. LiuL. Zhang and et al, Global exponential stability of almost periodic solutions for Nicholson's Blowflies system with nonlinear density-dependent mortality terms and patch structure, Mathematical Modelling and Analysis, 22 (2017), 484-502.  doi: 10.3846/13926292.2017.1329171.  Google Scholar

[21]

L. BerezanskyE. Braverman and L. Idels, Nicholson's blowflies differential equations revisited: Main results and open problems, Applied Mathematical Modelling, 34 (2010), 1405-1417.  doi: 10.1016/j.apm.2009.08.027.  Google Scholar

[22]

J. K. Hale and S. M. Verduyn Lunel, Introduction to Functional Differential Equations, Springer-Verlag, New York, 1993. doi: 10.1007/978-1-4612-4342-7.  Google Scholar

[23]

H. Smith, An Introduction to Delay Differential Equations with Applications to the Life Sciences, Springer-Verlag, New York, 2011. doi: 10.1007/978-1-4419-7646-8.  Google Scholar

[24]

L. DuanX. Fang and C. Huang, Global exponential convergence in a delayed almost periodic Nicholson's blowflies model with discontinuous harvesting, Mathematical Methods in the Applied Sciences, 41 (2018), 1954-1965.  doi: 10.1002/mma.4722.  Google Scholar

[25]

L. Duan and C. Huang, Existence and global attractivity of almost periodic solutions for a delayed differential neoclassical growth model, Mathematical Methods in the Applied Sciences, 40 (2017), 814-822.  doi: 10.1002/mma.4019.  Google Scholar

show all references

References:
[1]

A. M. Fink, Almost Periodic Differential Equations, Lecture Notes in Mathematics, Vol. 377, Springer-Verlag, Berlin, 1974.  Google Scholar

[2]

C. Huang and H. Zhang, Periodicity of non-autonomous inertial neural networks involving proportional delays and non-reduced order method, International Journal of Biomathematics, 12 (2019), 1950016. doi: 10.1142/S1793524519500165.  Google Scholar

[3] C. Zhang, Almost Periodic Type Functions and Ergodicity, Kluwer Academic/Science Press, Beijing, 2003.  doi: 10.1007/978-94-007-1073-3.  Google Scholar
[4]

T. M. Touaoula, Global stability for a class of functional differential equations (Application to Nicholson's blowflies and Mackey-Glass models), Discrete & Continuous Dynamical Systems -A, 38 (2018), 4391-4419.  doi: 10.3934/dcds.2018191.  Google Scholar

[5]

S. Chen and J. Yu, Stability and bifurcation on predator-prey systems with nonlocal prey competition, Discrete & Continuous Dynamical Systems -A, 38 (2018), 43-62.  doi: 10.3934/dcds.2018002.  Google Scholar

[6]

T. Shibata, Global behavior of bifurcation curves for the nonlinear eigenvalue problems with periodic nonlinear terms, Communications on Pure & Applied Analysis, 17 (2018), 2139-2147.  doi: 10.3934/cpaa.2018102.  Google Scholar

[7]

C. HuangY. QiaoL. Huang and R. Agarwal, Dynamical behaviors of a food-chain model with stage structure and time delays, Advances in Difference Equations, 186 (2018), 1-26.  doi: 10.1186/s13662-018-1589-8.  Google Scholar

[8]

Z. YangC. Huang and X. Zou, Effect of impulsive controls in a model system for age-structured population over a patchy environment, Journal of Mathematical Biology, 76 (2018), 1387-1419.  doi: 10.1007/s00285-017-1172-z.  Google Scholar

[9]

C. HuangZ. YangT. Yi and X. Zou, On the basins of attraction for a class of delay differential equations with non-monotone bistable nonlinearities, Journal of Differential Equations, 256 (2014), 2101-2114.  doi: 10.1016/j.jde.2013.12.015.  Google Scholar

[10]

B. Liu, Global exponential stability of positive periodic solutions for a delayed Nicholsons blowflies model, Journal of Mathematical Analysis and Applications, 412 (2014), 212-221.  doi: 10.1016/j.jmaa.2013.10.049.  Google Scholar

[11]

B. Liu, New results on global exponential stability of almost periodic solutions for a delayed Nicholson blowflies model, Annales Polonici Mathematici, 113 (2015), 191-208.  doi: 10.4064/ap113-2-6.  Google Scholar

[12]

W. Xiong, New results on positive pseudo-almost periodic solutions for a delayed Nicholson's blowflies model, Nonlinear Dynamics, 85 (2016), 563-571.  doi: 10.1007/s11071-016-2706-4.  Google Scholar

[13]

Y. Xu, New stability theorem for periodic Nicholson's model with mortality term, Applied Mathematics Letters, (2019). doi: 10.1016/j.aml.2019.02.021.  Google Scholar

[14]

B. Liu, Almost periodic solutions for a delayed Nicholson's blowflies model with a nonlinear density-dependent mortality term, Advances in Difference Equations, 72 (2014), 1-16.  doi: 10.1186/1687-1847-2014-72.  Google Scholar

[15]

B. Liu, Positive periodic solutions for a nonlinear density-dependent mortality Nicholson's blowflies model, Kodai Mathematical Journal, 37 (2014), 157-173.  doi: 10.2996/kmj/1396008252.  Google Scholar

[16]

L. Yao, Dynamics of Nicholson's blowflies models with a nonlinear density-dependent mortality, Applied Mathematical Modelling, 64 (2018), 185-195.  doi: 10.1016/j.apm.2018.07.007.  Google Scholar

[17]

Y. Tang, Global attractivity of asymptotically almost periodic Nicholson's blowflies models with a nonlinear density-dependent mortality term, International Journal of Biomathematics, 11 (2018), 1850079. doi: 10.1142/S1793524518500791.  Google Scholar

[18]

Y. Xu, Existence and global exponential stability of positive almost periodic solutions for a delayed Nicholson's blowflies model, Journal of the Korean Mathematical Society, 51 (2014), 473-493.  doi: 10.4134/JKMS.2014.51.3.473.  Google Scholar

[19]

W. Chen and W. Wang, Almost periodic solutions for a delayed Nicholson's blowflies system with nonlinear density-dependent mortality terms and patch structure, Advances in Difference Equations, 205 (2014), 1-19.  doi: 10.1186/1687-1847-2014-205.  Google Scholar

[20]

P. LiuL. Zhang and et al, Global exponential stability of almost periodic solutions for Nicholson's Blowflies system with nonlinear density-dependent mortality terms and patch structure, Mathematical Modelling and Analysis, 22 (2017), 484-502.  doi: 10.3846/13926292.2017.1329171.  Google Scholar

[21]

L. BerezanskyE. Braverman and L. Idels, Nicholson's blowflies differential equations revisited: Main results and open problems, Applied Mathematical Modelling, 34 (2010), 1405-1417.  doi: 10.1016/j.apm.2009.08.027.  Google Scholar

[22]

J. K. Hale and S. M. Verduyn Lunel, Introduction to Functional Differential Equations, Springer-Verlag, New York, 1993. doi: 10.1007/978-1-4612-4342-7.  Google Scholar

[23]

H. Smith, An Introduction to Delay Differential Equations with Applications to the Life Sciences, Springer-Verlag, New York, 2011. doi: 10.1007/978-1-4419-7646-8.  Google Scholar

[24]

L. DuanX. Fang and C. Huang, Global exponential convergence in a delayed almost periodic Nicholson's blowflies model with discontinuous harvesting, Mathematical Methods in the Applied Sciences, 41 (2018), 1954-1965.  doi: 10.1002/mma.4722.  Google Scholar

[25]

L. Duan and C. Huang, Existence and global attractivity of almost periodic solutions for a delayed differential neoclassical growth model, Mathematical Methods in the Applied Sciences, 40 (2017), 814-822.  doi: 10.1002/mma.4019.  Google Scholar

Figure 1.  Numerical solutions $ x(t) $ to example (4.1) with initial values: $ 2, 4, 6 $
[1]

Azeddine Elmajidi, Elhoussine Elmazoudi, Jamila Elalami, Noureddine Elalami. Dependent delay stability characterization for a polynomial T-S Carbon Dioxide model. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021035

[2]

Jing Feng, Bin-Guo Wang. An almost periodic Dengue transmission model with age structure and time-delayed input of vector in a patchy environment. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3069-3096. doi: 10.3934/dcdsb.2020220

[3]

Jia Li, Junxiang Xu. On the reducibility of a class of almost periodic Hamiltonian systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3905-3919. doi: 10.3934/dcdsb.2020268

[4]

Skyler Simmons. Stability of Broucke's isosceles orbit. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3759-3779. doi: 10.3934/dcds.2021015

[5]

Rafael Luís, Sandra Mendonça. A note on global stability in the periodic logistic map. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4211-4220. doi: 10.3934/dcdsb.2020094

[6]

Yinsong Bai, Lin He, Huijiang Zhao. Nonlinear stability of rarefaction waves for a hyperbolic system with Cattaneo's law. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021049

[7]

Demou Luo, Qiru Wang. Dynamic analysis on an almost periodic predator-prey system with impulsive effects and time delays. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3427-3453. doi: 10.3934/dcdsb.2020238

[8]

Brian Ryals, Robert J. Sacker. Bifurcation in the almost periodic $ 2 $D Ricker map. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021089

[9]

Massimo Barnabei, Alessandro Borri, Andrea De Gaetano, Costanzo Manes, Pasquale Palumbo, Jorge Guerra Pires. A short-term food intake model involving glucose, insulin and ghrelin. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021114

[10]

Shanjian Tang, Fu Zhang. Path-dependent optimal stochastic control and viscosity solution of associated Bellman equations. Discrete & Continuous Dynamical Systems, 2015, 35 (11) : 5521-5553. doi: 10.3934/dcds.2015.35.5521

[11]

Xiaoming Wang. Quasi-periodic solutions for a class of second order differential equations with a nonlinear damping term. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 543-556. doi: 10.3934/dcdss.2017027

[12]

Michael Grinfeld, Amy Novick-Cohen. Some remarks on stability for a phase field model with memory. Discrete & Continuous Dynamical Systems, 2006, 15 (4) : 1089-1117. doi: 10.3934/dcds.2006.15.1089

[13]

Zaihong Wang, Jin Li, Tiantian Ma. An erratum note on the paper: Positive periodic solution for Brillouin electron beam focusing system. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1995-1997. doi: 10.3934/dcdsb.2013.18.1995

[14]

Feng-Bin Wang, Xueying Wang. A general multipatch cholera model in periodic environments. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021105

[15]

Xiongxiong Bao, Wan-Tong Li. Existence and stability of generalized transition waves for time-dependent reaction-diffusion systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3621-3641. doi: 10.3934/dcdsb.2020249

[16]

Ronald E. Mickens. Positivity preserving discrete model for the coupled ODE's modeling glycolysis. Conference Publications, 2003, 2003 (Special) : 623-629. doi: 10.3934/proc.2003.2003.623

[17]

Yunfei Lv, Rong Yuan, Yuan He. Wavefronts of a stage structured model with state--dependent delay. Discrete & Continuous Dynamical Systems, 2015, 35 (10) : 4931-4954. doi: 10.3934/dcds.2015.35.4931

[18]

Huy Dinh, Harbir Antil, Yanlai Chen, Elena Cherkaev, Akil Narayan. Model reduction for fractional elliptic problems using Kato's formula. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021004

[19]

Shiwen Niu, Hongmei Cheng, Rong Yuan. A free boundary problem of some modified Leslie-Gower predator-prey model with nonlocal diffusion term. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021129

[20]

Siqi Chen, Yong-Kui Chang, Yanyan Wei. Pseudo $ S $-asymptotically Bloch type periodic solutions to a damped evolution equation. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021017

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (296)
  • HTML views (234)
  • Cited by (102)

Other articles
by authors

[Back to Top]