April  2020, 19(4): 1915-1930. doi: 10.3934/cpaa.2020084

On a delayed epidemic model with non-instantaneous impulses

1. 

College of Mathematics, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China

2. 

Departamento de Estatística, Análise Matemática e Optimización, Facultade de Matemáticas, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain

3. 

Instituto de Matemáticas, Facultade de Matemáticas, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain

*Corresponding author.

Dedicated to professor Tomás Caraballo on the occasion of his 60th birthday

Received  April 2019 Revised  October 2019 Published  January 2020

We introduce a non-instantaneous pulse vaccination model. Non-instantaneous impulsive nonlinear differential equations provide an adequate biomathematical model of some medical problems. In this paper we study some basic properties such as the attractiveness of the infection-free periodic solution and the permanence of some sub-population for a vaccine model where a constant fraction of the susceptible population is vaccinated in some periodic way. Our model is a system of nonlinear differential equations with impulses.

Citation: Liang Bai, Juan J. Nieto, José M. Uzal. On a delayed epidemic model with non-instantaneous impulses. Communications on Pure & Applied Analysis, 2020, 19 (4) : 1915-1930. doi: 10.3934/cpaa.2020084
References:
[1]

R. AgarwalS. Hristova and D. O'Regan, Noninstantaneous impulses in Caputo fractional differential equations and practical stability via Lyapunov functions, J. Franklin Inst., 354 (2017), 3097-3119.  doi: 10.1016/j.jfranklin.2017.02.002.  Google Scholar

[2]

R. Agarwal, S. Hristova and D. O'Regan, Non-Instantaneous Impulses in Differential Equations, Springer International Publishing, 2017. doi: 10.1007/978-3-319-66384-5.  Google Scholar

[3]

L. Bai and J. J. Nieto, Variational approach to differential equations with not instantaneous impulses, Appl. Math. Lett., 73 (2017), 44-48.  doi: 10.1016/j.aml.2017.02.019.  Google Scholar

[4]

L. BaiJ. J. Nieto and X. Wang, Variational approach to non-instantaneous impulsive nonlinear differential equations, J. Nonlinear Sci. Appl., 10 (2017), 2440-2448.  doi: 10.22436/jnsa.010.05.14.  Google Scholar

[5] D. Bainov and P. Simeonov, Impulsive Differential Equations: Periodic Solutions and Applications, vol. 66, CRC Press, 1993.   Google Scholar
[6]

M. Benchohra, S. Litimein and J. J. Nieto, Semilinear fractional differential equations with infinite delay and non-instantaneous impulses, Journal of Fixed Point Theory and Applications, 21 (2019), 21. doi: 10.1007/s11784-019-0660-8.  Google Scholar

[7]

F. Brauer and C. Castillo-Chavez, Mathematical Models in Population Biology and Epidemiology, Springer-Verlag GmbH, 2012. doi: 10.1007/978-1-4614-1686-9.  Google Scholar

[8]

K. L. Cooke and P. Van Den Driessche, Analysis of an SEIRS epidemic model with two delays, J. Math. Biol., 35 (1996), 240-260.  doi: 10.1007/s002850050051.  Google Scholar

[9]

O. Diekmann and J. Heesterbeek, Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis and Interpretation, Wiley Series in Mathematical & Computational Biology, Wiley, 2000.  Google Scholar

[10]

S. GaoL. ChenJ. J. Nieto and A. Torres, Analysis of a delayed epidemic model with pulse vaccination and saturation incidence, Vaccine, 24 (2006), 6037-6045.  doi: 10.1016/j.chaos.2006.04.061.  Google Scholar

[11]

H. Guo, L. Chen and X. Song, Dynamical properties of a kind of SIR model with constant vaccination rate and impulsive state feedback control, Int. J. Biomath., 10 (2017), 1750093. doi: 10.1142/S1793524517500930.  Google Scholar

[12]

E. Hernández and D. O'Regan, On a new class of abstract impulsive differential equations, Proc. Amer. Math. Soc., 141 (2013), 1641-1649.  doi: 10.1090/S0002-9939-2012-11613-2.  Google Scholar

[13]

J. Jiao, S. Cai and L. Li, Impulsive vaccination and dispersal on dynamics of an SIR epidemic model with restricting infected individuals boarding transports, Physica A: Statistical Mechanics and its Applications, 449 (2016), 145 – 159. doi: 10.1016/j.physa.2015.10.055.  Google Scholar

[14]

A. Khaliq and M. U. Rehman, On variational methods to non-instantaneous impulsive fractional differential equation, Applied Mathematics Letters, 83 (2018), 95-102.  doi: 10.1016/j.aml.2018.03.014.  Google Scholar

[15]

V. Lakshmikantham, D. D. Bainov and P. S. Simeonov, Theory of Impulsive Differential Equations, vol. 6, World Scientific, 1989. doi: 10.1142/0906.  Google Scholar

[16]

Y. Luo, S. Gao and S. Yan, Pulse vaccination strategy in an epidemic model with two susceptible subclasses and time delay, Appl. Math., 2 (2011), 57. doi: 10.4236/am.2011.21007.  Google Scholar

[17]

D. J. Nokes and J. Swinton, Vaccination in pulses: a strategy for global eradication of measles and polio?, Trends Microbiol., 5 (1997), 14-19.   Google Scholar

[18]

A. M. Samoilenko and N. A. Perestyuk, Impulsive Differential Equations, vol. 14 of World Scientific Series on Nonlinear Science. Series A: Monographs and Treatises, World Scientific Publishing Co., Inc., River Edge, NJ, 1995. doi: 10.1142/9789812798664.  Google Scholar

[19]

H. Smith, An Introduction to Delay Differential Equations with Applications to the Life Sciences, Springer, 2010. doi: 10.1007/978-1-4419-7646-8.  Google Scholar

[20]

R. Terzieva, Some phenomena for non-instantaneous impulsive differential equations, Int. J. Pure Appl. Math., 119 (2018), 483-490.   Google Scholar

[21]

J. Wang, Stability of noninstantaneous impulsive evolution equations, Appl. Math. Lett., 73 (2017), 157 – 162. doi: 10.1016/j.aml.2017.04.010.  Google Scholar

[22]

Y. Xiao and L. Chen, Modeling and analysis of a predator-prey model with disease in the prey, Math. Biosci., 171 (2001), 59-82.  doi: 10.1016/S0025-5564(01)00049-9.  Google Scholar

[23]

D. YangJ. Wang and D. O'Regan, On the orbital hausdorff dependence of differential equations with non-instantaneous impulses, Comptes Rendus Mathematique, 356 (2018), 150-171.  doi: 10.1016/j.crma.2018.01.001.  Google Scholar

[24]

B. Zhu and L. Liu, Periodic boundary value problems for fractional semilinear integro-differential equations with non-instantaneous impulses, Boundary Value Problems, 2018. doi: 10.1186/s13661-018-1048-1.  Google Scholar

show all references

References:
[1]

R. AgarwalS. Hristova and D. O'Regan, Noninstantaneous impulses in Caputo fractional differential equations and practical stability via Lyapunov functions, J. Franklin Inst., 354 (2017), 3097-3119.  doi: 10.1016/j.jfranklin.2017.02.002.  Google Scholar

[2]

R. Agarwal, S. Hristova and D. O'Regan, Non-Instantaneous Impulses in Differential Equations, Springer International Publishing, 2017. doi: 10.1007/978-3-319-66384-5.  Google Scholar

[3]

L. Bai and J. J. Nieto, Variational approach to differential equations with not instantaneous impulses, Appl. Math. Lett., 73 (2017), 44-48.  doi: 10.1016/j.aml.2017.02.019.  Google Scholar

[4]

L. BaiJ. J. Nieto and X. Wang, Variational approach to non-instantaneous impulsive nonlinear differential equations, J. Nonlinear Sci. Appl., 10 (2017), 2440-2448.  doi: 10.22436/jnsa.010.05.14.  Google Scholar

[5] D. Bainov and P. Simeonov, Impulsive Differential Equations: Periodic Solutions and Applications, vol. 66, CRC Press, 1993.   Google Scholar
[6]

M. Benchohra, S. Litimein and J. J. Nieto, Semilinear fractional differential equations with infinite delay and non-instantaneous impulses, Journal of Fixed Point Theory and Applications, 21 (2019), 21. doi: 10.1007/s11784-019-0660-8.  Google Scholar

[7]

F. Brauer and C. Castillo-Chavez, Mathematical Models in Population Biology and Epidemiology, Springer-Verlag GmbH, 2012. doi: 10.1007/978-1-4614-1686-9.  Google Scholar

[8]

K. L. Cooke and P. Van Den Driessche, Analysis of an SEIRS epidemic model with two delays, J. Math. Biol., 35 (1996), 240-260.  doi: 10.1007/s002850050051.  Google Scholar

[9]

O. Diekmann and J. Heesterbeek, Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis and Interpretation, Wiley Series in Mathematical & Computational Biology, Wiley, 2000.  Google Scholar

[10]

S. GaoL. ChenJ. J. Nieto and A. Torres, Analysis of a delayed epidemic model with pulse vaccination and saturation incidence, Vaccine, 24 (2006), 6037-6045.  doi: 10.1016/j.chaos.2006.04.061.  Google Scholar

[11]

H. Guo, L. Chen and X. Song, Dynamical properties of a kind of SIR model with constant vaccination rate and impulsive state feedback control, Int. J. Biomath., 10 (2017), 1750093. doi: 10.1142/S1793524517500930.  Google Scholar

[12]

E. Hernández and D. O'Regan, On a new class of abstract impulsive differential equations, Proc. Amer. Math. Soc., 141 (2013), 1641-1649.  doi: 10.1090/S0002-9939-2012-11613-2.  Google Scholar

[13]

J. Jiao, S. Cai and L. Li, Impulsive vaccination and dispersal on dynamics of an SIR epidemic model with restricting infected individuals boarding transports, Physica A: Statistical Mechanics and its Applications, 449 (2016), 145 – 159. doi: 10.1016/j.physa.2015.10.055.  Google Scholar

[14]

A. Khaliq and M. U. Rehman, On variational methods to non-instantaneous impulsive fractional differential equation, Applied Mathematics Letters, 83 (2018), 95-102.  doi: 10.1016/j.aml.2018.03.014.  Google Scholar

[15]

V. Lakshmikantham, D. D. Bainov and P. S. Simeonov, Theory of Impulsive Differential Equations, vol. 6, World Scientific, 1989. doi: 10.1142/0906.  Google Scholar

[16]

Y. Luo, S. Gao and S. Yan, Pulse vaccination strategy in an epidemic model with two susceptible subclasses and time delay, Appl. Math., 2 (2011), 57. doi: 10.4236/am.2011.21007.  Google Scholar

[17]

D. J. Nokes and J. Swinton, Vaccination in pulses: a strategy for global eradication of measles and polio?, Trends Microbiol., 5 (1997), 14-19.   Google Scholar

[18]

A. M. Samoilenko and N. A. Perestyuk, Impulsive Differential Equations, vol. 14 of World Scientific Series on Nonlinear Science. Series A: Monographs and Treatises, World Scientific Publishing Co., Inc., River Edge, NJ, 1995. doi: 10.1142/9789812798664.  Google Scholar

[19]

H. Smith, An Introduction to Delay Differential Equations with Applications to the Life Sciences, Springer, 2010. doi: 10.1007/978-1-4419-7646-8.  Google Scholar

[20]

R. Terzieva, Some phenomena for non-instantaneous impulsive differential equations, Int. J. Pure Appl. Math., 119 (2018), 483-490.   Google Scholar

[21]

J. Wang, Stability of noninstantaneous impulsive evolution equations, Appl. Math. Lett., 73 (2017), 157 – 162. doi: 10.1016/j.aml.2017.04.010.  Google Scholar

[22]

Y. Xiao and L. Chen, Modeling and analysis of a predator-prey model with disease in the prey, Math. Biosci., 171 (2001), 59-82.  doi: 10.1016/S0025-5564(01)00049-9.  Google Scholar

[23]

D. YangJ. Wang and D. O'Regan, On the orbital hausdorff dependence of differential equations with non-instantaneous impulses, Comptes Rendus Mathematique, 356 (2018), 150-171.  doi: 10.1016/j.crma.2018.01.001.  Google Scholar

[24]

B. Zhu and L. Liu, Periodic boundary value problems for fractional semilinear integro-differential equations with non-instantaneous impulses, Boundary Value Problems, 2018. doi: 10.1186/s13661-018-1048-1.  Google Scholar

Figure 1.  Simulation with $ R^*<1 $, infection-free solution
Figure 2.  Simulation with $ R_*>1 $, permanence of infected population
[1]

Ahmed Boudaoui, Tomás Caraballo, Abdelghani Ouahab. Stochastic differential equations with non-instantaneous impulses driven by a fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2017, 22 (7) : 2521-2541. doi: 10.3934/dcdsb.2017084

[2]

Shujing Gao, Dehui Xie, Lansun Chen. Pulse vaccination strategy in a delayed sir epidemic model with vertical transmission. Discrete & Continuous Dynamical Systems - B, 2007, 7 (1) : 77-86. doi: 10.3934/dcdsb.2007.7.77

[3]

Joaquim P. Mateus, Paulo Rebelo, Silvério Rosa, César M. Silva, Delfim F. M. Torres. Optimal control of non-autonomous SEIRS models with vaccination and treatment. Discrete & Continuous Dynamical Systems - S, 2018, 11 (6) : 1179-1199. doi: 10.3934/dcdss.2018067

[4]

Alan J. Terry. Pulse vaccination strategies in a metapopulation SIR model. Mathematical Biosciences & Engineering, 2010, 7 (2) : 455-477. doi: 10.3934/mbe.2010.7.455

[5]

Xiaomei Feng, Zhidong Teng, Kai Wang, Fengqin Zhang. Backward bifurcation and global stability in an epidemic model with treatment and vaccination. Discrete & Continuous Dynamical Systems - B, 2014, 19 (4) : 999-1025. doi: 10.3934/dcdsb.2014.19.999

[6]

Geni Gupur, Xue-Zhi Li. Global stability of an age-structured SIRS epidemic model with vaccination. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 643-652. doi: 10.3934/dcdsb.2004.4.643

[7]

Aili Wang, Yanni Xiao, Robert A. Cheke. Global dynamics of a piece-wise epidemic model with switching vaccination strategy. Discrete & Continuous Dynamical Systems - B, 2014, 19 (9) : 2915-2940. doi: 10.3934/dcdsb.2014.19.2915

[8]

Baskar Sundaravadivoo. Controllability analysis of nonlinear fractional order differential systems with state delay and non-instantaneous impulsive effects. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 0-0. doi: 10.3934/dcdss.2020138

[9]

Maryam Ghoreishi, Abolfazl Mirzazadeh, Gerhard-Wilhelm Weber, Isa Nakhai-Kamalabadi. Joint pricing and replenishment decisions for non-instantaneous deteriorating items with partial backlogging, inflation- and selling price-dependent demand and customer returns. Journal of Industrial & Management Optimization, 2015, 11 (3) : 933-949. doi: 10.3934/jimo.2015.11.933

[10]

Qianqian Cui, Zhipeng Qiu, Ling Ding. An SIR epidemic model with vaccination in a patchy environment. Mathematical Biosciences & Engineering, 2017, 14 (5&6) : 1141-1157. doi: 10.3934/mbe.2017059

[11]

Tao Feng, Zhipeng Qiu. Global analysis of a stochastic TB model with vaccination and treatment. Discrete & Continuous Dynamical Systems - B, 2019, 24 (6) : 2923-2939. doi: 10.3934/dcdsb.2018292

[12]

Hongying Shu, Xiang-Sheng Wang. Global dynamics of a coupled epidemic model. Discrete & Continuous Dynamical Systems - B, 2017, 22 (4) : 1575-1585. doi: 10.3934/dcdsb.2017076

[13]

Xia Wang, Shengqiang Liu, Libin Rong. Permanence and extinction of a non-autonomous HIV-1 model with time delays. Discrete & Continuous Dynamical Systems - B, 2014, 19 (6) : 1783-1800. doi: 10.3934/dcdsb.2014.19.1783

[14]

Martin Luther Mann Manyombe, Joseph Mbang, Jean Lubuma, Berge Tsanou. Global dynamics of a vaccination model for infectious diseases with asymptomatic carriers. Mathematical Biosciences & Engineering, 2016, 13 (4) : 813-840. doi: 10.3934/mbe.2016019

[15]

Yali Yang, Sanyi Tang, Xiaohong Ren, Huiwen Zhao, Chenping Guo. Global stability and optimal control for a tuberculosis model with vaccination and treatment. Discrete & Continuous Dynamical Systems - B, 2016, 21 (3) : 1009-1022. doi: 10.3934/dcdsb.2016.21.1009

[16]

Yukihiko Nakata, Yoichi Enatsu, Yoshiaki Muroya. On the global stability of an SIRS epidemic model with distributed delays. Conference Publications, 2011, 2011 (Special) : 1119-1128. doi: 10.3934/proc.2011.2011.1119

[17]

Eunha Shim. A note on epidemic models with infective immigrants and vaccination. Mathematical Biosciences & Engineering, 2006, 3 (3) : 557-566. doi: 10.3934/mbe.2006.3.557

[18]

Majid Jaberi-Douraki, Seyed M. Moghadas. Optimal control of vaccination dynamics during an influenza epidemic. Mathematical Biosciences & Engineering, 2014, 11 (5) : 1045-1063. doi: 10.3934/mbe.2014.11.1045

[19]

Jinyan Wang, Yanni Xiao, Robert A. Cheke. Modelling the effects of contaminated environments in mainland China on seasonal HFMD infections and the potential benefit of a pulse vaccination strategy. Discrete & Continuous Dynamical Systems - B, 2019, 24 (11) : 5849-5870. doi: 10.3934/dcdsb.2019109

[20]

Jinhu Xu, Yicang Zhou. Global stability of a multi-group model with generalized nonlinear incidence and vaccination age. Discrete & Continuous Dynamical Systems - B, 2016, 21 (3) : 977-996. doi: 10.3934/dcdsb.2016.21.977

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (70)
  • HTML views (50)
  • Cited by (0)

Other articles
by authors

[Back to Top]