April  2020, 19(4): 2403-2418. doi: 10.3934/cpaa.2020105

Sensitivity to small delays of mean square stability for stochastic neutral evolution equations

1. 

College of Mathematical Sciences, Tianjin Normal University, Tianjin, 300387, China

2. 

Department of Mathematical Sciences, The University of Liverpool, Liverpool, L69 7ZL, U.K

*Corresponding author

Dedicated to Professor Tomás Caraballo on occasion of his 60th Birthday

Received  November 2018 Revised  July 2019 Published  January 2020

Fund Project: Wei Wang is supported by China Scholarship Council (Grant No. 201708120038) and National Natural Science Foundation of China (Grant No. 11601382). Kai Liu is supported by Tianjin Thousand Talents Plan and Xiulian Wang is supported by Project of Tianjin Municipal Education Commission (Grant No. JW1714).

In this work, we are concerned about the mean square exponential stability property for a class of stochastic neutral functional differential equations with small delay parameters. Both distributed and point delays under the neutral term are considered. Sufficient conditions are given to capture the exponential stability in mean square of the stochastic system under consideration. As an illustration, we present some practical systems to show their exponential stability which is not sensitive to small delays in the mean square sense.

Citation: Wei Wang, Kai Liu, Xiulian Wang. Sensitivity to small delays of mean square stability for stochastic neutral evolution equations. Communications on Pure & Applied Analysis, 2020, 19 (4) : 2403-2418. doi: 10.3934/cpaa.2020105
References:
[1]

J. A. Appleby and X. R. Mao, Stochastic stabilisation of functional differential equations, Syst. Control Letters, 54 (2005), 1069-1081.  doi: 10.1016/j.sysconle.2005.03.003.  Google Scholar

[2]

A. Bátkai and S. Piazzera, Semigroups for Delay Equations, Research Notes in Mathematics, A. K. Peters, Wellesley, Massachusetts, 2005.  Google Scholar

[3]

J. Bierkens, Pathwise stability of degenerate stochastic evolutions, Integr. Equ. Oper. Theory, 23 (2010), 1-27.  doi: 10.1007/s00020-010-1841-4.  Google Scholar

[4]

R. DatkoJ. Lagnese and M. Polis, An example on the effect of time delays in boundary feedback of wave equations, SIAM J. Control Optim., 24 (1986), 152-156.  doi: 10.1137/0324007.  Google Scholar

[5]

K. Liu, Sensitivity to small delays of pathwise stability for stochastic retarded evolution equations, J. Theoretical Probab., 31 (2018), 1625-1646.  doi: 10.1007/s10959-017-0750-8.  Google Scholar

[6]

K. Liu, Almost sure exponential stability sensitive to small time delay of stochastic neutral functional differential equations, Applied Math. Letters, 77 (2018), 57-63.  doi: 10.1016/j.aml.2017.09.008.  Google Scholar

[7] K. Liu, Stochastic Stability of Differential Equations in Abstract Spaces, Cambridge University Press, 2019.  doi: 10.1017/9781108653039.  Google Scholar
[8]

K. Liu, Stationary solutions of neutral stochastic partial differential equations with delays in the highest-order derivatives, Discrete Cont. Dyn. Sys.-B, 23 (2018), 3915-3934.   Google Scholar

[9]

H. Tanabe, Equations of Evolution, Pitman, New York, 1979.  Google Scholar

show all references

References:
[1]

J. A. Appleby and X. R. Mao, Stochastic stabilisation of functional differential equations, Syst. Control Letters, 54 (2005), 1069-1081.  doi: 10.1016/j.sysconle.2005.03.003.  Google Scholar

[2]

A. Bátkai and S. Piazzera, Semigroups for Delay Equations, Research Notes in Mathematics, A. K. Peters, Wellesley, Massachusetts, 2005.  Google Scholar

[3]

J. Bierkens, Pathwise stability of degenerate stochastic evolutions, Integr. Equ. Oper. Theory, 23 (2010), 1-27.  doi: 10.1007/s00020-010-1841-4.  Google Scholar

[4]

R. DatkoJ. Lagnese and M. Polis, An example on the effect of time delays in boundary feedback of wave equations, SIAM J. Control Optim., 24 (1986), 152-156.  doi: 10.1137/0324007.  Google Scholar

[5]

K. Liu, Sensitivity to small delays of pathwise stability for stochastic retarded evolution equations, J. Theoretical Probab., 31 (2018), 1625-1646.  doi: 10.1007/s10959-017-0750-8.  Google Scholar

[6]

K. Liu, Almost sure exponential stability sensitive to small time delay of stochastic neutral functional differential equations, Applied Math. Letters, 77 (2018), 57-63.  doi: 10.1016/j.aml.2017.09.008.  Google Scholar

[7] K. Liu, Stochastic Stability of Differential Equations in Abstract Spaces, Cambridge University Press, 2019.  doi: 10.1017/9781108653039.  Google Scholar
[8]

K. Liu, Stationary solutions of neutral stochastic partial differential equations with delays in the highest-order derivatives, Discrete Cont. Dyn. Sys.-B, 23 (2018), 3915-3934.   Google Scholar

[9]

H. Tanabe, Equations of Evolution, Pitman, New York, 1979.  Google Scholar

[1]

Tomás Caraballo, José Real, T. Taniguchi. The exponential stability of neutral stochastic delay partial differential equations. Discrete & Continuous Dynamical Systems - A, 2007, 18 (2&3) : 295-313. doi: 10.3934/dcds.2007.18.295

[2]

Ismael Maroto, Carmen Núñez, Rafael Obaya. Exponential stability for nonautonomous functional differential equations with state-dependent delay. Discrete & Continuous Dynamical Systems - B, 2017, 22 (8) : 3167-3197. doi: 10.3934/dcdsb.2017169

[3]

Tomás Caraballo, Carlos Ogouyandjou, Fulbert Kuessi Allognissode, Mamadou Abdoul Diop. Existence and exponential stability for neutral stochastic integro–differential equations with impulses driven by a Rosenblatt process. Discrete & Continuous Dynamical Systems - B, 2020, 25 (2) : 507-528. doi: 10.3934/dcdsb.2019251

[4]

Jan Čermák, Jana Hrabalová. Delay-dependent stability criteria for neutral delay differential and difference equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4577-4588. doi: 10.3934/dcds.2014.34.4577

[5]

Chunhong Li, Jiaowan Luo. Stochastic invariance for neutral functional differential equation with non-lipschitz coefficients. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3299-3318. doi: 10.3934/dcdsb.2018321

[6]

Stéphane Junca, Bruno Lombard. Stability of neutral delay differential equations modeling wave propagation in cracked media. Conference Publications, 2015, 2015 (special) : 678-685. doi: 10.3934/proc.2015.0678

[7]

Fuke Wu, Shigeng Hu. The LaSalle-type theorem for neutral stochastic functional differential equations with infinite delay. Discrete & Continuous Dynamical Systems - A, 2012, 32 (3) : 1065-1094. doi: 10.3934/dcds.2012.32.1065

[8]

Yuyun Zhao, Yi Zhang, Tao Xu, Ling Bai, Qian Zhang. pth moment exponential stability of hybrid stochastic functional differential equations by feedback control based on discrete-time state observations. Discrete & Continuous Dynamical Systems - B, 2017, 22 (1) : 209-226. doi: 10.3934/dcdsb.2017011

[9]

Yongqiang Suo, Chenggui Yuan. Large deviations for neutral stochastic functional differential equations. Communications on Pure & Applied Analysis, 2020, 19 (4) : 2369-2384. doi: 10.3934/cpaa.2020103

[10]

Michael Scheutzow. Exponential growth rate for a singular linear stochastic delay differential equation. Discrete & Continuous Dynamical Systems - B, 2013, 18 (6) : 1683-1696. doi: 10.3934/dcdsb.2013.18.1683

[11]

Min Zhu, Panpan Ren, Junping Li. Exponential stability of solutions for retarded stochastic differential equations without dissipativity. Discrete & Continuous Dynamical Systems - B, 2017, 22 (7) : 2923-2938. doi: 10.3934/dcdsb.2017157

[12]

Serge Nicaise, Cristina Pignotti, Julie Valein. Exponential stability of the wave equation with boundary time-varying delay. Discrete & Continuous Dynamical Systems - S, 2011, 4 (3) : 693-722. doi: 10.3934/dcdss.2011.4.693

[13]

Luis Barreira, Claudia Valls. Delay equations and nonuniform exponential stability. Discrete & Continuous Dynamical Systems - S, 2008, 1 (2) : 219-223. doi: 10.3934/dcdss.2008.1.219

[14]

John A. D. Appleby, John A. Daniels. Exponential growth in the solution of an affine stochastic differential equation with an average functional and financial market bubbles. Conference Publications, 2011, 2011 (Special) : 91-101. doi: 10.3934/proc.2011.2011.91

[15]

Abdelhai Elazzouzi, Aziz Ouhinou. Optimal regularity and stability analysis in the $\alpha-$Norm for a class of partial functional differential equations with infinite delay. Discrete & Continuous Dynamical Systems - A, 2011, 30 (1) : 115-135. doi: 10.3934/dcds.2011.30.115

[16]

Bao-Zhu Guo, Li-Ming Cai. A note for the global stability of a delay differential equation of hepatitis B virus infection. Mathematical Biosciences & Engineering, 2011, 8 (3) : 689-694. doi: 10.3934/mbe.2011.8.689

[17]

Pham Huu Anh Ngoc. Stability of nonlinear differential systems with delay. Evolution Equations & Control Theory, 2015, 4 (4) : 493-505. doi: 10.3934/eect.2015.4.493

[18]

Yong Ren, Huijin Yang, Wensheng Yin. Weighted exponential stability of stochastic coupled systems on networks with delay driven by $ G $-Brownian motion. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3379-3393. doi: 10.3934/dcdsb.2018325

[19]

Fuke Wu, Xuerong Mao, Peter E. Kloeden. Discrete Razumikhin-type technique and stability of the Euler--Maruyama method to stochastic functional differential equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (2) : 885-903. doi: 10.3934/dcds.2013.33.885

[20]

Junya Nishiguchi. On parameter dependence of exponential stability of equilibrium solutions in differential equations with a single constant delay. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5657-5679. doi: 10.3934/dcds.2016048

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (38)
  • HTML views (31)
  • Cited by (0)

Other articles
by authors

[Back to Top]