• Previous Article
    A stochastic threshold for an epidemic model with isolation and a non linear incidence
  • CPAA Home
  • This Issue
  • Next Article
    Global dynamics for a class of reaction-diffusion equations with distributed delay and neumann condition
May  2020, 19(5): 2491-2512. doi: 10.3934/cpaa.2020109

Global existence and non-existence analyses to a nonlinear Klein-Gordon system with damping terms under positive initial energy

1. 

College of Mathematics and Statistics, Chongqing University, Chongqing, 401331, China

2. 

School of Mathematics, South China University of Technology, Guangzhou 510640, China

* Corresponding author

Received  October 2018 Revised  September 2019 Published  March 2020

This paper considers the Cauchy problem for a nonlinear Klein-Gordon system with damping terms. In the existing works, the solution with low and critical initial energy was studied. We extend the previous results on following three aspects. Firstly, we consider the vacuum isolating phenomenon of solution under initial energy $ E(0)\leq0 $. We find that the corresponding vacuum region is an ball and it expands to whole phase space as $ E(0) $ decays to $ -\infty $. Secondly, we discuss the asymptotic behavior of blow-up solution and prove that the solution grows exponentially. The growth speed is estimated especially. Finally, the solution with arbitrary positive initial energy is studied. In this case, the initial conditions such that the solution exists globally and blows up in finite time are given, respectively.

Citation: Guangyu Xu, Chunlai Mu, Dan Li. Global existence and non-existence analyses to a nonlinear Klein-Gordon system with damping terms under positive initial energy. Communications on Pure & Applied Analysis, 2020, 19 (5) : 2491-2512. doi: 10.3934/cpaa.2020109
References:
[1]

A. B. Aliev and A. A. Kazimov, The existence and nonexistence of global solutions of the Cauchy problem for Klein-Gordon systems, Dokl. Math., 90 (2014), 680-682.  doi: 10.1134/s1064562414070084.  Google Scholar

[2]

A. B. Aliev and A. A. Kazimov, Nonexistence of global solutions of the Cauchy problem for systems of Klein-Gordon equations with positive initial energy, Differ. Equ., 51 (2015), 1563-1568.  doi: 10.1134/S0012266115120034.  Google Scholar

[3]

A. B. Aliev and G. I. Yusifova, Nonexistecne of global solutions of Cauchy problem for systems of semilinear hyperbolic equations with positive initial energy, Electron. J. Differ. Equ., 211 (2017), 1-10.   Google Scholar

[4]

C. O. AlvesM. M. CavalcantiV. N. D. CavalcantiM. Rammaha and D. Toundykov, On existence, uniform decay rates and blow up for solutions of systems of nonlinear wave equations with damping and source terms, Discrete Contin. Dyn. Syst. Ser. S, 2 (2009), 583-608.  doi: 10.3934/dcdss.2009.2.583.  Google Scholar

[5]

M. AlimohammadyC. Cattani and M. K. Kalleji, Invariance and existence analysis for semilinear hyperbolic equations with damping and conical singularity, J. Math. Anal. Appl., 455 (2017), 569-591.  doi: 10.1016/j.jmaa.2017.05.057.  Google Scholar

[6]

J. DelortD. Fang and R. Xue, Global existence of small solutions for quadratic quasilinear Klein-Gordon systems in two space dimensions, J. Funct. Anal., 211 (2004), 288-323.  doi: 10.1016/j.jfa.2004.01.008.  Google Scholar

[7]

H. Chen and G. W. Liu, Global existence and nonexistence for semilinear parabolic equations with conical degeneration, J. Pseudo-Differ. Oper. Appl., 3 (2012), 329-349.  doi: 10.1007/s11868-012-0046-9.  Google Scholar

[8]

D. Fang and R. Xue, Global existence of small solutions for cubic quasi-linear Klein-Gordon systems in one space dimension, Acta. Math. Sin. English Ser., 22 (2006), 1085-1102.  doi: 10.1007/s10114-005-0668-4.  Google Scholar

[9]

V. Georgiev, Global solution of the system of wave and Klein-Gordon equations, Math. Z., 203 (1990), 683-698.  doi: 10.1007/BF02570764.  Google Scholar

[10]

Y. Q. Guo and M. A. Rammaha, Blow-up of solutions to systems of nonlinear wave equations with supercritical sources, Appl. Anal., 92 (2013), 1101-1115.  doi: 10.1080/00036811.2011.649734.  Google Scholar

[11]

F. John, Blow-up for quasilinear wave equations in three space dimensions, Commun. Pure Appl. Math., 34 (2010), 29-51.  doi: 10.1002/cpa.3160340103.  Google Scholar

[12]

Y. Kawahara and H. Sunagawa, Global small amplitude solutions for two-dimensional nonlinear Klein-Gordon systems in the presence of mass resonance, J. Differ. Equ., 251 (2011), 2549-2567.  doi: 10.1016/j.jde.2011.04.001.  Google Scholar

[13]

N. KutevN. Kolkovska and M. Dimova, Global existence of cauchy problem for Boussinesq paradigm equation, Comput. Math. Appl., 65 (2013), 500-511.  doi: 10.1016/j.camwa.2012.05.024.  Google Scholar

[14]

C. M. Li and E. S. Wright, Global existence of solutions to a reaction diffusion system based upon carbonate reaction kinetics, Commun. Pure Appl. Anal., 1 (2017), 77-84.  doi: 10.3934/cpaa.2002.1.77.  Google Scholar

[15]

H. A. Levine, Instability and nonexistence of global solutions to nonlinear wave equations of the form $pu_tt = -au+f(u)$, Trans. Amer. Math. Soc., 192 (1974), 1-21.  doi: 10.2307/1996814.  Google Scholar

[16]

H. A. Levine, Some additional remarks on the nonexistence of global solutions to nonlinear wave equations, SIAM J. Math. Anal., 5 (1974), 138-146.  doi: 10.1137/0505015.  Google Scholar

[17]

M. R. Li and L. Y. Tsai, Existence and nonexistence of global solutions of some system of semilinear wave equations, Nonlinear Anal. Theory Methods Appl., 54 (2003), 1397-1415.  doi: 10.1016/S0362-546X(03)00192-5.  Google Scholar

[18]

M. R. Li and L. Y. Tsai, On a system of nonlinear wave equations, Taiwan. J. Math., 7 (2003), 557-573.  doi: 10.11650/twjm/1500407577.  Google Scholar

[19]

W. J. Liu, Global existence, asymptotic behavior and blow-up of solutions for coupled Klein-Gordon equations with damping terms, Nonlinear Anal. Theory Methods Appl., 73 (2010), 244-255.  doi: 10.1016/j.na.2010.03.017.  Google Scholar

[20]

X. L. Li and B. Y. Liu, Vacuum isolating, blow up threshold and asymptotic behavior of solutions for a nonlocal parabolic equation, J. Math. Phys., 58 (2017), 101503. doi: 10.1063/1.5004668.  Google Scholar

[21]

Y. C. Liu, On potential wells and vacuum isolating of solutions for semilinear wave equations, J. Differ. Equ., 192 (2003), 155-169.  doi: 10.1016/S0022-0396(02)00020-7.  Google Scholar

[22]

Y. C. Liu and R. Z. Xu, A class of fourth order wave equations with dissipative and nonlinear strain terms, J. Differ. Equ., 244 (2008), 200-228.  doi: 10.1016/j.jde.2007.10.015.  Google Scholar

[23]

Y. C. Liu and R. Z. Xu, Global existence and blow up of solutions for cauchy problem of generalized boussinesq equation, Physica D, 237 (2008), 721-731.  doi: 10.1016/j.physd.2007.09.028.  Google Scholar

[24]

Y. C. Liu and R. Z. Xu, Potential well method for cauchy problem of generalized double dispersion equations, J. Math. Anal. Appl., 338 (2008), 1169-1187.  doi: 10.1016/j.jmaa.2007.05.076.  Google Scholar

[25]

Y. C. Liu and J. S. Zhao, On potential wells and applications to semilinear hyperbolic equations and parabolic equations, Nonlinear Anal. Theory Methods Appl., 64 (2006), 2665-2687.  doi: 10.1016/j.na.2005.09.011.  Google Scholar

[26]

M. M. Miranda and L. A. Medeiros, On the existence of global solutions of a coupled nonlinear Klein-Gordon equations, Funkc. Ekvacioj Ser. Int., 30 (1987), 147-161.   Google Scholar

[27]

V. G. Makhankov, Dynamics of classical solitons in non-integrable systems, Phys. Rep. Rev. Sec. Phys. Lett., 35 (1978), 1-128.  doi: 10.1016/0370-1573(78)90074-1.  Google Scholar

[28]

L. A. Medeiros and G. P. Menzala, On a mixed problem for a class of nonlinear Klein-Gordon equations, Acta Math. Hung., 52 (1988), 61-69.  doi: 10.1007/BF01952481.  Google Scholar

[29]

L. A. Medeiros and M. M. Miranda, Weak solutions for a system of nonlinear klein-gordon equations, Ann. Mat. Pura Appl., 146 (1986), 173-183.  doi: 10.1007/BF01762364.  Google Scholar

[30]

S. A. Messaoudi and B. Said-Houari, Global nonexistence of positive initial energy solutions of a system of nonlinear viscoelastic wave equations with damping and source terms, J. Math. Anal. Appl., 365 (2010), 277-287.  doi: 10.1016/j.jmaa.2009.10.050.  Google Scholar

[31]

M. Reed, Abstract Nonlinear Wave Equations, Springer, Berlin, 1976.  Google Scholar

[32]

B. Said-Houari, Global nonexistence of positive initial-energy solutions of a system of nonlinear wave equations with damping and source terms, Differ. Integral Equ., 23 (2010), 79-92.   Google Scholar

[33]

B. Said-Houari, Exponential growth of positive initial-energy solutions of a system of nonlinear viscoelastic wave equations with damping and source terms, Z. Angew. Math. Phys., 62 (2011), 115-133.  doi: 10.1007/s00033-010-0082-3.  Google Scholar

[34]

B. Said-Houari, Global existence and decay of solutions of a nonlinear system of wave equations, Appl. Anal., 91 (2012), 475-489.  doi: 10.1080/00036811.2010.549475.  Google Scholar

[35]

H. Sunagawa, On global small amplitude solutions to systems of cubic nonlinear Klein-Gordon equations with different mass terms in one space dimension, J. Differ. Equ., 192 (2003), 308-325.  doi: 10.1016/S0022-0396(03)00125-6.  Google Scholar

[36]

I. E. Segal, Nonlinear partial differential equations in quantum field theory, in Proc. Sympos. Appl. Math., Vol. XVII, Amer. Math. Soc., Providence, R.I. (1965), 210–226.  Google Scholar

[37]

I. E. Segal, Non-linear semi-groups, Ann. Math., 78 (1963), 339-364.  doi: 10.2307/1970347.  Google Scholar

[38]

S. B. Wang and X. Su, The Cauchy problem for the dissipative Boussinesq equation, Nonlinear Anal. Real World Appl., 45 (2019), 116-141.  doi: 10.1016/j.nonrwa.2018.06.012.  Google Scholar

[39]

S. T. Wu, Global existence, blow-up and asymptotic behavior of solutions for a class of coupled nonlinear klein-gordon equations with damping terms, Acta Appl. Math., 119 (2012), 75-95.  doi: 10.1007/s10440-011-9662-2.  Google Scholar

[40]

Y. J. Wang, A sufficient condition for finite time blow up of the nonlinear Klein-Gordon equations with arbitrarily positive initial energy, Proc. Amer. Math. Soc., 136 (2008), 3477-3482.  doi: 10.1090/S0002-9939-08-09514-2.  Google Scholar

[41]

Y. J. Wang, Nonexistence of global solutions of a class of coupled nonlinear Klein-Gordon equations with nonnegative potentials and arbitrary initial energy, IMA J. Appl. Math., 24 (2009), 392-415.  doi: 10.1093/imamat/hxp004.  Google Scholar

[42]

G. Y. Xu, Global existence, finite time blow-up and vacuum isolating phenomena for semilinear parabolic equation with conical degeneration, Taiwan. J. Math., 22 (2018), 1479-1508.  doi: 10.11650/tjm/180302.  Google Scholar

[43]

Y. B. Yang and R. Z. Xu, Finite time blowup for nonlinear Klein-Gordon equations with arbitrarily positive initial energy, Appl. Math. Lett., 77 (2018), 21-26.  doi: 10.1016/j.aml.2017.09.014.  Google Scholar

[44]

J. Zhang, Stability fo standing waves for nonlinear Schrödinger equations with unbounded potentials, Z. Angew. Math. Phys., 51 (2000), 498-503.  doi: 10.1007/s000330050011.  Google Scholar

[45]

J. Zhang, Sharp conditions of global existence for nonlinear Schrödinger and Klein-Gordon equations, Nonlinear Anal. Theory Methods Appl., 48 (2002), 191-207.  doi: 10.1016/S0362-546X(00)00180-2.  Google Scholar

[46]

J. Zhang, On the standing wave in coupled non-linear Klein-Gordon equations, Math. Meth. Appl. Sci., 26 (2003), 11-25.  doi: 10.1002/mma.340.  Google Scholar

[47]

R. ZengC. L. Mu and S. M. Zhou, A blow-up result for Kirchhoff-type equations with high energy, Math. Meth. Appl. Sci., 34 (2011), 479-486.  doi: 10.1002/mma.1374.  Google Scholar

show all references

References:
[1]

A. B. Aliev and A. A. Kazimov, The existence and nonexistence of global solutions of the Cauchy problem for Klein-Gordon systems, Dokl. Math., 90 (2014), 680-682.  doi: 10.1134/s1064562414070084.  Google Scholar

[2]

A. B. Aliev and A. A. Kazimov, Nonexistence of global solutions of the Cauchy problem for systems of Klein-Gordon equations with positive initial energy, Differ. Equ., 51 (2015), 1563-1568.  doi: 10.1134/S0012266115120034.  Google Scholar

[3]

A. B. Aliev and G. I. Yusifova, Nonexistecne of global solutions of Cauchy problem for systems of semilinear hyperbolic equations with positive initial energy, Electron. J. Differ. Equ., 211 (2017), 1-10.   Google Scholar

[4]

C. O. AlvesM. M. CavalcantiV. N. D. CavalcantiM. Rammaha and D. Toundykov, On existence, uniform decay rates and blow up for solutions of systems of nonlinear wave equations with damping and source terms, Discrete Contin. Dyn. Syst. Ser. S, 2 (2009), 583-608.  doi: 10.3934/dcdss.2009.2.583.  Google Scholar

[5]

M. AlimohammadyC. Cattani and M. K. Kalleji, Invariance and existence analysis for semilinear hyperbolic equations with damping and conical singularity, J. Math. Anal. Appl., 455 (2017), 569-591.  doi: 10.1016/j.jmaa.2017.05.057.  Google Scholar

[6]

J. DelortD. Fang and R. Xue, Global existence of small solutions for quadratic quasilinear Klein-Gordon systems in two space dimensions, J. Funct. Anal., 211 (2004), 288-323.  doi: 10.1016/j.jfa.2004.01.008.  Google Scholar

[7]

H. Chen and G. W. Liu, Global existence and nonexistence for semilinear parabolic equations with conical degeneration, J. Pseudo-Differ. Oper. Appl., 3 (2012), 329-349.  doi: 10.1007/s11868-012-0046-9.  Google Scholar

[8]

D. Fang and R. Xue, Global existence of small solutions for cubic quasi-linear Klein-Gordon systems in one space dimension, Acta. Math. Sin. English Ser., 22 (2006), 1085-1102.  doi: 10.1007/s10114-005-0668-4.  Google Scholar

[9]

V. Georgiev, Global solution of the system of wave and Klein-Gordon equations, Math. Z., 203 (1990), 683-698.  doi: 10.1007/BF02570764.  Google Scholar

[10]

Y. Q. Guo and M. A. Rammaha, Blow-up of solutions to systems of nonlinear wave equations with supercritical sources, Appl. Anal., 92 (2013), 1101-1115.  doi: 10.1080/00036811.2011.649734.  Google Scholar

[11]

F. John, Blow-up for quasilinear wave equations in three space dimensions, Commun. Pure Appl. Math., 34 (2010), 29-51.  doi: 10.1002/cpa.3160340103.  Google Scholar

[12]

Y. Kawahara and H. Sunagawa, Global small amplitude solutions for two-dimensional nonlinear Klein-Gordon systems in the presence of mass resonance, J. Differ. Equ., 251 (2011), 2549-2567.  doi: 10.1016/j.jde.2011.04.001.  Google Scholar

[13]

N. KutevN. Kolkovska and M. Dimova, Global existence of cauchy problem for Boussinesq paradigm equation, Comput. Math. Appl., 65 (2013), 500-511.  doi: 10.1016/j.camwa.2012.05.024.  Google Scholar

[14]

C. M. Li and E. S. Wright, Global existence of solutions to a reaction diffusion system based upon carbonate reaction kinetics, Commun. Pure Appl. Anal., 1 (2017), 77-84.  doi: 10.3934/cpaa.2002.1.77.  Google Scholar

[15]

H. A. Levine, Instability and nonexistence of global solutions to nonlinear wave equations of the form $pu_tt = -au+f(u)$, Trans. Amer. Math. Soc., 192 (1974), 1-21.  doi: 10.2307/1996814.  Google Scholar

[16]

H. A. Levine, Some additional remarks on the nonexistence of global solutions to nonlinear wave equations, SIAM J. Math. Anal., 5 (1974), 138-146.  doi: 10.1137/0505015.  Google Scholar

[17]

M. R. Li and L. Y. Tsai, Existence and nonexistence of global solutions of some system of semilinear wave equations, Nonlinear Anal. Theory Methods Appl., 54 (2003), 1397-1415.  doi: 10.1016/S0362-546X(03)00192-5.  Google Scholar

[18]

M. R. Li and L. Y. Tsai, On a system of nonlinear wave equations, Taiwan. J. Math., 7 (2003), 557-573.  doi: 10.11650/twjm/1500407577.  Google Scholar

[19]

W. J. Liu, Global existence, asymptotic behavior and blow-up of solutions for coupled Klein-Gordon equations with damping terms, Nonlinear Anal. Theory Methods Appl., 73 (2010), 244-255.  doi: 10.1016/j.na.2010.03.017.  Google Scholar

[20]

X. L. Li and B. Y. Liu, Vacuum isolating, blow up threshold and asymptotic behavior of solutions for a nonlocal parabolic equation, J. Math. Phys., 58 (2017), 101503. doi: 10.1063/1.5004668.  Google Scholar

[21]

Y. C. Liu, On potential wells and vacuum isolating of solutions for semilinear wave equations, J. Differ. Equ., 192 (2003), 155-169.  doi: 10.1016/S0022-0396(02)00020-7.  Google Scholar

[22]

Y. C. Liu and R. Z. Xu, A class of fourth order wave equations with dissipative and nonlinear strain terms, J. Differ. Equ., 244 (2008), 200-228.  doi: 10.1016/j.jde.2007.10.015.  Google Scholar

[23]

Y. C. Liu and R. Z. Xu, Global existence and blow up of solutions for cauchy problem of generalized boussinesq equation, Physica D, 237 (2008), 721-731.  doi: 10.1016/j.physd.2007.09.028.  Google Scholar

[24]

Y. C. Liu and R. Z. Xu, Potential well method for cauchy problem of generalized double dispersion equations, J. Math. Anal. Appl., 338 (2008), 1169-1187.  doi: 10.1016/j.jmaa.2007.05.076.  Google Scholar

[25]

Y. C. Liu and J. S. Zhao, On potential wells and applications to semilinear hyperbolic equations and parabolic equations, Nonlinear Anal. Theory Methods Appl., 64 (2006), 2665-2687.  doi: 10.1016/j.na.2005.09.011.  Google Scholar

[26]

M. M. Miranda and L. A. Medeiros, On the existence of global solutions of a coupled nonlinear Klein-Gordon equations, Funkc. Ekvacioj Ser. Int., 30 (1987), 147-161.   Google Scholar

[27]

V. G. Makhankov, Dynamics of classical solitons in non-integrable systems, Phys. Rep. Rev. Sec. Phys. Lett., 35 (1978), 1-128.  doi: 10.1016/0370-1573(78)90074-1.  Google Scholar

[28]

L. A. Medeiros and G. P. Menzala, On a mixed problem for a class of nonlinear Klein-Gordon equations, Acta Math. Hung., 52 (1988), 61-69.  doi: 10.1007/BF01952481.  Google Scholar

[29]

L. A. Medeiros and M. M. Miranda, Weak solutions for a system of nonlinear klein-gordon equations, Ann. Mat. Pura Appl., 146 (1986), 173-183.  doi: 10.1007/BF01762364.  Google Scholar

[30]

S. A. Messaoudi and B. Said-Houari, Global nonexistence of positive initial energy solutions of a system of nonlinear viscoelastic wave equations with damping and source terms, J. Math. Anal. Appl., 365 (2010), 277-287.  doi: 10.1016/j.jmaa.2009.10.050.  Google Scholar

[31]

M. Reed, Abstract Nonlinear Wave Equations, Springer, Berlin, 1976.  Google Scholar

[32]

B. Said-Houari, Global nonexistence of positive initial-energy solutions of a system of nonlinear wave equations with damping and source terms, Differ. Integral Equ., 23 (2010), 79-92.   Google Scholar

[33]

B. Said-Houari, Exponential growth of positive initial-energy solutions of a system of nonlinear viscoelastic wave equations with damping and source terms, Z. Angew. Math. Phys., 62 (2011), 115-133.  doi: 10.1007/s00033-010-0082-3.  Google Scholar

[34]

B. Said-Houari, Global existence and decay of solutions of a nonlinear system of wave equations, Appl. Anal., 91 (2012), 475-489.  doi: 10.1080/00036811.2010.549475.  Google Scholar

[35]

H. Sunagawa, On global small amplitude solutions to systems of cubic nonlinear Klein-Gordon equations with different mass terms in one space dimension, J. Differ. Equ., 192 (2003), 308-325.  doi: 10.1016/S0022-0396(03)00125-6.  Google Scholar

[36]

I. E. Segal, Nonlinear partial differential equations in quantum field theory, in Proc. Sympos. Appl. Math., Vol. XVII, Amer. Math. Soc., Providence, R.I. (1965), 210–226.  Google Scholar

[37]

I. E. Segal, Non-linear semi-groups, Ann. Math., 78 (1963), 339-364.  doi: 10.2307/1970347.  Google Scholar

[38]

S. B. Wang and X. Su, The Cauchy problem for the dissipative Boussinesq equation, Nonlinear Anal. Real World Appl., 45 (2019), 116-141.  doi: 10.1016/j.nonrwa.2018.06.012.  Google Scholar

[39]

S. T. Wu, Global existence, blow-up and asymptotic behavior of solutions for a class of coupled nonlinear klein-gordon equations with damping terms, Acta Appl. Math., 119 (2012), 75-95.  doi: 10.1007/s10440-011-9662-2.  Google Scholar

[40]

Y. J. Wang, A sufficient condition for finite time blow up of the nonlinear Klein-Gordon equations with arbitrarily positive initial energy, Proc. Amer. Math. Soc., 136 (2008), 3477-3482.  doi: 10.1090/S0002-9939-08-09514-2.  Google Scholar

[41]

Y. J. Wang, Nonexistence of global solutions of a class of coupled nonlinear Klein-Gordon equations with nonnegative potentials and arbitrary initial energy, IMA J. Appl. Math., 24 (2009), 392-415.  doi: 10.1093/imamat/hxp004.  Google Scholar

[42]

G. Y. Xu, Global existence, finite time blow-up and vacuum isolating phenomena for semilinear parabolic equation with conical degeneration, Taiwan. J. Math., 22 (2018), 1479-1508.  doi: 10.11650/tjm/180302.  Google Scholar

[43]

Y. B. Yang and R. Z. Xu, Finite time blowup for nonlinear Klein-Gordon equations with arbitrarily positive initial energy, Appl. Math. Lett., 77 (2018), 21-26.  doi: 10.1016/j.aml.2017.09.014.  Google Scholar

[44]

J. Zhang, Stability fo standing waves for nonlinear Schrödinger equations with unbounded potentials, Z. Angew. Math. Phys., 51 (2000), 498-503.  doi: 10.1007/s000330050011.  Google Scholar

[45]

J. Zhang, Sharp conditions of global existence for nonlinear Schrödinger and Klein-Gordon equations, Nonlinear Anal. Theory Methods Appl., 48 (2002), 191-207.  doi: 10.1016/S0362-546X(00)00180-2.  Google Scholar

[46]

J. Zhang, On the standing wave in coupled non-linear Klein-Gordon equations, Math. Meth. Appl. Sci., 26 (2003), 11-25.  doi: 10.1002/mma.340.  Google Scholar

[47]

R. ZengC. L. Mu and S. M. Zhou, A blow-up result for Kirchhoff-type equations with high energy, Math. Meth. Appl. Sci., 34 (2011), 479-486.  doi: 10.1002/mma.1374.  Google Scholar

[1]

Xiaoqiang Dai, Chao Yang, Shaobin Huang, Tao Yu, Yuanran Zhu. Finite time blow-up for a wave equation with dynamic boundary condition at critical and high energy levels in control systems. Electronic Research Archive, 2020, 28 (1) : 91-102. doi: 10.3934/era.2020006

[2]

Mingyou Zhang, Qingsong Zhao, Yu Liu, Wenke Li. Finite time blow-up and global existence of solutions for semilinear parabolic equations with nonlinear dynamical boundary condition. Electronic Research Archive, 2020, 28 (1) : 369-381. doi: 10.3934/era.2020021

[3]

Guangyu Xu, Jun Zhou. Global existence and blow-up of solutions to a singular Non-Newton polytropic filtration equation with critical and supercritical initial energy. Communications on Pure & Applied Analysis, 2018, 17 (5) : 1805-1820. doi: 10.3934/cpaa.2018086

[4]

Shuyin Wu, Joachim Escher, Zhaoyang Yin. Global existence and blow-up phenomena for a weakly dissipative Degasperis-Procesi equation. Discrete & Continuous Dynamical Systems - B, 2009, 12 (3) : 633-645. doi: 10.3934/dcdsb.2009.12.633

[5]

Yanbing Yang, Runzhang Xu. Nonlinear wave equation with both strongly and weakly damped terms: Supercritical initial energy finite time blow up. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1351-1358. doi: 10.3934/cpaa.2019065

[6]

Shouming Zhou, Chunlai Mu, Liangchen Wang. Well-posedness, blow-up phenomena and global existence for the generalized $b$-equation with higher-order nonlinearities and weak dissipation. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 843-867. doi: 10.3934/dcds.2014.34.843

[7]

Monica Marras, Stella Vernier Piro. On global existence and bounds for blow-up time in nonlinear parabolic problems with time dependent coefficients. Conference Publications, 2013, 2013 (special) : 535-544. doi: 10.3934/proc.2013.2013.535

[8]

Xiaoliang Li, Baiyu Liu. Finite time blow-up and global solutions for a nonlocal parabolic equation with Hartree type nonlinearity. Communications on Pure & Applied Analysis, 2020, 19 (6) : 3093-3112. doi: 10.3934/cpaa.2020134

[9]

Anthony Suen. Existence and a blow-up criterion of solution to the 3D compressible Navier-Stokes-Poisson equations with finite energy. Discrete & Continuous Dynamical Systems - A, 2020, 40 (3) : 1775-1798. doi: 10.3934/dcds.2020093

[10]

Manuel del Pino, Monica Musso, Juncheng Wei, Yifu Zhou. Type Ⅱ finite time blow-up for the energy critical heat equation in $ \mathbb{R}^4 $. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3327-3355. doi: 10.3934/dcds.2020052

[11]

Zhiqing Liu, Zhong Bo Fang. Blow-up phenomena for a nonlocal quasilinear parabolic equation with time-dependent coefficients under nonlinear boundary flux. Discrete & Continuous Dynamical Systems - B, 2016, 21 (10) : 3619-3635. doi: 10.3934/dcdsb.2016113

[12]

Long Wei, Zhijun Qiao, Yang Wang, Shouming Zhou. Conserved quantities, global existence and blow-up for a generalized CH equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1733-1748. doi: 10.3934/dcds.2017072

[13]

Miaoqing Tian, Sining Zheng. Global boundedness versus finite-time blow-up of solutions to a quasilinear fully parabolic Keller-Segel system of two species. Communications on Pure & Applied Analysis, 2016, 15 (1) : 243-260. doi: 10.3934/cpaa.2016.15.243

[14]

Bin Guo, Wenjie Gao. Finite-time blow-up and extinction rates of solutions to an initial Neumann problem involving the $p(x,t)-Laplace$ operator and a non-local term. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 715-730. doi: 10.3934/dcds.2016.36.715

[15]

Pierpaolo Esposito, Maristella Petralla. Symmetries and blow-up phenomena for a Dirichlet problem with a large parameter. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1935-1957. doi: 10.3934/cpaa.2012.11.1935

[16]

Ming Lu, Yi Du, Zheng-An Yao. Blow-up phenomena for the 3D compressible MHD equations. Discrete & Continuous Dynamical Systems - A, 2012, 32 (5) : 1835-1855. doi: 10.3934/dcds.2012.32.1835

[17]

Monica Marras, Stella Vernier Piro. Blow-up phenomena in reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2012, 32 (11) : 4001-4014. doi: 10.3934/dcds.2012.32.4001

[18]

Qiang Lin, Xueteng Tian, Runzhang Xu, Meina Zhang. Blow up and blow up time for degenerate Kirchhoff-type wave problems involving the fractional Laplacian with arbitrary positive initial energy. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 0-0. doi: 10.3934/dcdss.2020160

[19]

Vo Anh Khoa, Le Thi Phuong Ngoc, Nguyen Thanh Long. Existence, blow-up and exponential decay of solutions for a porous-elastic system with damping and source terms. Evolution Equations & Control Theory, 2019, 8 (2) : 359-395. doi: 10.3934/eect.2019019

[20]

Nguyen Thanh Long, Hoang Hai Ha, Le Thi Phuong Ngoc, Nguyen Anh Triet. Existence, blow-up and exponential decay estimates for a system of nonlinear viscoelastic wave equations with nonlinear boundary conditions. Communications on Pure & Applied Analysis, 2020, 19 (1) : 455-492. doi: 10.3934/cpaa.2020023

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (106)
  • HTML views (138)
  • Cited by (0)

Other articles
by authors

[Back to Top]