
-
Previous Article
Existence of ground state solution and concentration of maxima for a class of indefinite variational problems
- CPAA Home
- This Issue
-
Next Article
Nonexistence results on the space or the half space of $ -\Delta u+\lambda u = |u|^{p-1}u $ via the Morse index
Traveling waves in a nonlocal dispersal epidemic model with spatio-temporal delay
1. | Nonlinear Scientific Research Center, Faculty of Science, Jiangsu University, Zhenjiang, Jiangsu 212013, China |
2. | School of Mathematical Sciences, Nanjing Normal University, Nanjing, Jiangsu 210046, China |
In this paper, we investigate the existence and nonexistence of traveling wave solutions in a nonlocal dispersal epidemic model with spatio-temporal delay. It is shown that this model admits a nontrivial positive traveling wave solution when the basic reproduction number $ R_0>1 $ and the wave speed $ c\geq c^* $ ($ c^* $ is the critical speed) and this model has no traveling wave solutions when $ R_0\leq1 $ or $ c<c^* $. This indicates that $ c^* $ is the minimal wave speed.
References:
[1] |
S. Ai and R. Albashaireh,
Traveling waves in spatial SIRS models, J. Dyn. Differ. Equ., 26 (2014), 143-164.
doi: 10.1007/s10884-014-9348-3. |
[2] |
F. Andreu-Vaillo, J. M. Mazón, J. D. Rossi and J. Toledo-Melero, Nonlocal Diffusion Problems, Mathematical Surveys and Monographs, Vol. 165, American Mathematical Society, Providence, RI, 2010.
doi: 10.1090/surv/165. |
[3] |
F. Brauer and C. Castillo-Chvez, Mathematical Models in Population Biology and Epidemiology, 2$^nd$ edition, Springer, Berlin, 2012.
doi: 10.1007/978-1-4614-1686-9. |
[4] |
F. Brauer, P. van den Driessche and J. Wu, Mathematical Epidemiology, Lecture Notes in Mathematics, Vol. 1945, Springer, New York, 2008.
doi: 10.1007/978-3-540-78911-6. |
[5] |
Y. Chen, J. Guo and F. Hamel,
Traveling waves for a lattice dynamical system arising in a diffusive endemic model, Nonlinearity, 30 (2017), 2334-2359.
doi: 10.1088/1361-6544/aa6b0a. |
[6] |
H. Cheng and R. Yuan,
Traveling wave solutions for a nonlocal dispersal Kermack-Mckendrick epidemic model with spatio-temporal delay, Sci. Sin. Math., 45 (2015), 765-788.
doi: 10.1007/s00028-016-0362-2. |
[7] |
W. Ding, W. Huang and S. Kansakar,
Traveling wave solutions for a diffusive SIS epidemic model, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 1291-1304.
doi: 10.3934/dcdsb.2013.18.1291. |
[8] |
A. Ducrot, M. Langlais and P. Magal,
Qualitative analysis and travelling wave solutions for the SI model with vertical transmission, Commun. Pure Appl. Anal., 11 (2012), 97-113.
doi: 10.3934/cpaa.2012.11.97. |
[9] |
A. Ducrot and P. Magal,
Traveling wave solutions for an infection-age structured epidemic model with external supplies, Nonlinearity, 23 (2011), 2891-2911.
doi: 10.1088/0951-7715/24/10/012. |
[10] |
P. Fife, Some Nonclassic Trends in Parabolic and Parabolic-like Evolutions, Trends in Nonlinear Analysis, Springer, Berlin, 2003.
doi: 10.1007/978-3-662-05281-5_3. |
[11] |
S. Fu,
Traveling waves for a diffusive SIR model with delay, J. Math. Anal. Appl., 435 (2016), 20-37.
doi: 10.1016/j.jmaa.2015.09.069. |
[12] |
J. He and J. Tsai, Traveling waves in the Kermack-Mckendrick epidemic model with latent period, Z. Angew. Math. Phys., 70 (2019), 27.
doi: 10.1007/s00033-018-1072-0. |
[13] |
H. Hethcote,
The mathematics of infectious diseases, SIAM Rev., 42 (2000), 599-653.
doi: 10.1137/S0036144500371907. |
[14] |
Y. Hosono and B. Ilyas,
Traveling waves for a simple diffusive SIR epidemic model, Math. Mod. Meth. Appl. S., 5 (1995), 935-966.
doi: 10.1142/S0218202595000504. |
[15] |
V. Hutson, S. Martinez, K. Mischailow and G. T. Vickers,
The evolution of dispersal, J. Math. Biol., 47 (2003), 483-517.
doi: 10.1007/s00285-003-0210-1. |
[16] |
C. Y. Kao, Y. Lou and W. Shen, Random dispersal vs non-local dispersal, Discrete Contin. Dyn. Syst., 26 (2010), 551-596.
doi: 10.3934/dcds.2010.26.551. |
[17] |
C. Y. Kao, Y. Lou and W. Shen,
Evolution of mixed dispersal in periodic environments, Discrete Contin. Dyn. Syst. Ser. B, 17 (2012), 2047-2072.
doi: 10.3934/dcdsb.2012.17.2047. |
[18] |
W. Li, G. Lin, C. Ma and F. Yang,
Traveling wave solutions of a nonlocal delayed SIR model without outbreak threshold, Discrete Contin. Dyn. Syst. Ser. B, 19 (2014), 467-484.
doi: 10.3934/dcdsb.2014.19.467. |
[19] |
Y. Li, W. Li and G. Lin,
Traveling waves of a delayed diffusive SIR epidemic model, Commun. Pure Appl. Anal., 14 (2015), 1001-1022.
doi: 10.3934/cpaa.2015.14.1001. |
[20] |
Y. Li, W. Li and F. Yang,
Traveling waves for a nonlocal dispersal SIR model with delay and external supplies, Appl. Math. Comput., 247 (2014), 723-740.
doi: 10.1016/j.amc.2014.09.072. |
[21] |
Y. Li, W. Li and G. Zhang,
Stability and uniqueness of traveling waves of a non-local dispersal SIR epidemic model, Dyn. Partial Differ. Equ., 14 (2017), 87-123.
doi: 10.4310/DPDE.2017.v14.n2.a1. |
[22] |
G. Lin,
Minimal wave speed of competitive diffusive systems with time delays, Appl. Math. Lett., 76 (2018), 164-169.
doi: 10.1016/j.aml.2017.08.018. |
[23] |
Z. Ma and R. Yuan, Traveling wave solutions of a nonlocal dispersal SIRS model with spatio-temporal delay, Int. J. Biomath., 10 (2017), 5.
doi: 10.1142/S1793524517500711. |
[24] |
S. Pan, W. Li and G. Lin,
Travelling wave fronts in nonlocal reaction-diffusion systems and applications, Z. Angew. Math. Phys., 60 (2009), 377-392.
doi: 10.1007/s00033-007-7005-y. |
[25] |
N. Rawal and W. Shen,
Criteria for the existence and lower bounds of principal eigenvalues of time periodic nonlocal dispersal operators and applications, J. Dyn. Differ. Equ., 24 (2012), 927-954.
doi: 10.1007/s10884-012-9276-z. |
[26] |
W. Shen and A. Zhang,
Spreading speeds for monostable equations with nonlocal dispersal in space periodic habitats, J. Differ. Equ., 249 (2010), 747-795.
doi: 10.1016/j.jde.2010.04.012. |
[27] | N. Shigesada and K. Kawasaki, Biological Invasions: Theory and Practice, Oxford University Press, Oxford, 1997. Google Scholar |
[28] |
H. Thieme and X. Zhao,
Asymptotic speeds of spread and traveling waves for integral equations and delayed reaction-diffusion models, J. Differ. Equ., 195 (2003), 430-470.
doi: 10.1016/S0022-0396(03)00175-X. |
[29] |
J. Wang, W. Li and F. Yang,
Traveling waves in a nonlocal dispersal SIR model with nonlocal delayed transmission, Commun. Nonlinear Sci., 27 (2015), 136-152.
doi: 10.1016/j.cnsns.2015.03.005. |
[30] |
H. Wang and X. Wang,
Traveling waves phenomena in a Kemack-Mckendrick SIR model, J. Dyn. Differ. Equ., 28 (2016), 143-166.
doi: 10.1007/s10884-015-9506-2. |
[31] |
Z. Wang and J. Wu,
Travelling waves of a diffusive Kermack-Mckendrick epidemic model with non-local delayed transmission, Proc. R. Soc. A - Math. Phys. Eng. Sci., 466 (2010), 237-261.
doi: 10.1098/rspa.2009.0377. |
[32] |
X. Wang, H. Wang and J. Wu,
Traveling waves of diffusive predator-prey systems: disease outbreak propagation, Discret. Contin. Dyn. Syst., 32 (2012), 3303-3324.
doi: 10.3934/dcds.2012.32.3303. |
[33] |
P. Weng and X. Zhao,
Spreading speed and traveling waves for a multi-type SIS epidemic model, J. Differ. Equ., 229 (2006), 270-296.
doi: 10.1016/j.jde.2006.01.020. |
[34] |
D. V. Widder, The Laplace Transform, Princeton University Press, Princeton, 1941.
![]() |
[35] |
C. Wu,
Existence of traveling waves with the critical speed for a discrete diffusive epidemic model, J. Differ. Equ., 262 (2017), 272-282.
doi: 10.1016/j.jde.2016.09.022. |
[36] |
C. Wu and P. Weng,
Asymptotic speed of propagation and traveling wavefronts for a SIR epidemic model, Discrete Contin. Dyn. Syst. Ser. B, 15 (2012), 867-892.
doi: 10.3934/dcdsb.2011.15.867. |
[37] |
J. Wu and X. Zou, Traveling wave fronts of reaction-diffusion systems with delay, J. Dyn. Differ. Equ., 13 (2001), 651–687. [Erratum in J. Dyn. Differ. Equ. 20 (2008), 531–533].
doi: 10.1007/s10884-007-9090-1. |
[38] |
F. Yang and W. Li,
Traveling waves in a nonlocal dispersal SIR model with critical wave speed, J. Math. Anal. Appl., 458 (2018), 1131-1146.
doi: 10.1016/j.jmaa.2017.10.016. |
[39] |
F. Yang, W. Li and J. Wang, Wave propagation for a class of non-local dispersal non-cooperative systems, Proc. R. Soc. Edinb. Sect. A Math., (2019), 1-33
doi: 10.1017/prm.2019.4. |
[40] |
F. Yang, W. Li and Z. Wang,
Traveling waves in a nonlocal dispersal SIR epidemic model, Nonlinear Anal. Real World Appl., 23 (2015), 129-147.
doi: 10.1016/j.nonrwa.2014.12.001. |
[41] |
F. Yang, Y. Li, W. Li and Z. Wang,
Traveling waves in a nonlocal dispersal Kermack-Mckendric epidemic model, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 1969-1993.
doi: 10.3934/dcdsb.2013.18.1969. |
[42] |
F. Zhan, G. Huo, Q. Liu, G. Sun and Z. Jin,
Existence of traveling waves in nonlinear SI epidemic models, J. Biol. Syst., 17 (2009), 643-657.
doi: 10.1142/S0218339009003101. |
[43] |
X. Zhao and W. Wang,
Fisher waves in an epidemic model, Discrete Contin. Dyn. Syst. Ser. B, 4 (2004), 1117-1128.
doi: 10.3934/dcdsb.2004.4.1117. |
[44] |
L. Zhao and Z. Wang,
Traveling wave fronts in a diffusive epidemic model with multiple parallel infectious stages, IMA J. Appl. Math., 81 (2016), 795-823.
doi: 10.1093/imamat/hxw033. |
[45] |
L. Zhao, Z. Wang and S. Ruan,
Traveling wave solutions in a two-group SIR epidemic model with constant recruitment, J. Math. Biol., 1 (2018), 1-45.
doi: 10.1007/s00285-018-1227-9. |
[46] |
Z. Zhen, J. Wei, J. Zhou and L. Tian,
Wave propagation in a nonlocal diffusion epidemic model with nonlocal delayed effects, Appl. Math. Comput., 339 (2018), 15-37.
doi: 10.1016/j.amc.2018.07.007. |
[47] |
Z. Zhen, J. Wei, L. Tian, J. Zhou and W. Chen,
Wave propagation in a diffusive epidemic model with spatiotemporal delay, Math. Meth. Appl. Sci., 41 (2018), 7074-7098.
doi: 10.1002/mma.5216. |
[48] |
J. Zhou, L. Song, J. Wei and H. Xu,
Critical traveling waves in a diffusive disease model, J. Math. Anal. Appl., 476 (2019), 522-538.
doi: 10.1016/j.jmaa.2019.03.066. |
[49] |
J. Zhou, J. Xu, J. Wei and H. Xu,
Existence and non-existence of traveling wave solutions for a nonlocal dispersal SIR epidemic model with nonlinear incidence rate, Nonlinear Anal. Real World Appl., 41 (2018), 204-231.
doi: 10.1016/j.nonrwa.2017.10.016. |
[50] |
J. Zhou and Y. Yang,
Traveling waves for a nonlocal dispersal SIR model with general nonlinear incidence rate and spatio-temporal delay, Discrete Contin. Dyn. Syst. Ser. B, 22 (2017), 1719-1741.
doi: 10.3934/dcdsb.2017082. |
show all references
References:
[1] |
S. Ai and R. Albashaireh,
Traveling waves in spatial SIRS models, J. Dyn. Differ. Equ., 26 (2014), 143-164.
doi: 10.1007/s10884-014-9348-3. |
[2] |
F. Andreu-Vaillo, J. M. Mazón, J. D. Rossi and J. Toledo-Melero, Nonlocal Diffusion Problems, Mathematical Surveys and Monographs, Vol. 165, American Mathematical Society, Providence, RI, 2010.
doi: 10.1090/surv/165. |
[3] |
F. Brauer and C. Castillo-Chvez, Mathematical Models in Population Biology and Epidemiology, 2$^nd$ edition, Springer, Berlin, 2012.
doi: 10.1007/978-1-4614-1686-9. |
[4] |
F. Brauer, P. van den Driessche and J. Wu, Mathematical Epidemiology, Lecture Notes in Mathematics, Vol. 1945, Springer, New York, 2008.
doi: 10.1007/978-3-540-78911-6. |
[5] |
Y. Chen, J. Guo and F. Hamel,
Traveling waves for a lattice dynamical system arising in a diffusive endemic model, Nonlinearity, 30 (2017), 2334-2359.
doi: 10.1088/1361-6544/aa6b0a. |
[6] |
H. Cheng and R. Yuan,
Traveling wave solutions for a nonlocal dispersal Kermack-Mckendrick epidemic model with spatio-temporal delay, Sci. Sin. Math., 45 (2015), 765-788.
doi: 10.1007/s00028-016-0362-2. |
[7] |
W. Ding, W. Huang and S. Kansakar,
Traveling wave solutions for a diffusive SIS epidemic model, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 1291-1304.
doi: 10.3934/dcdsb.2013.18.1291. |
[8] |
A. Ducrot, M. Langlais and P. Magal,
Qualitative analysis and travelling wave solutions for the SI model with vertical transmission, Commun. Pure Appl. Anal., 11 (2012), 97-113.
doi: 10.3934/cpaa.2012.11.97. |
[9] |
A. Ducrot and P. Magal,
Traveling wave solutions for an infection-age structured epidemic model with external supplies, Nonlinearity, 23 (2011), 2891-2911.
doi: 10.1088/0951-7715/24/10/012. |
[10] |
P. Fife, Some Nonclassic Trends in Parabolic and Parabolic-like Evolutions, Trends in Nonlinear Analysis, Springer, Berlin, 2003.
doi: 10.1007/978-3-662-05281-5_3. |
[11] |
S. Fu,
Traveling waves for a diffusive SIR model with delay, J. Math. Anal. Appl., 435 (2016), 20-37.
doi: 10.1016/j.jmaa.2015.09.069. |
[12] |
J. He and J. Tsai, Traveling waves in the Kermack-Mckendrick epidemic model with latent period, Z. Angew. Math. Phys., 70 (2019), 27.
doi: 10.1007/s00033-018-1072-0. |
[13] |
H. Hethcote,
The mathematics of infectious diseases, SIAM Rev., 42 (2000), 599-653.
doi: 10.1137/S0036144500371907. |
[14] |
Y. Hosono and B. Ilyas,
Traveling waves for a simple diffusive SIR epidemic model, Math. Mod. Meth. Appl. S., 5 (1995), 935-966.
doi: 10.1142/S0218202595000504. |
[15] |
V. Hutson, S. Martinez, K. Mischailow and G. T. Vickers,
The evolution of dispersal, J. Math. Biol., 47 (2003), 483-517.
doi: 10.1007/s00285-003-0210-1. |
[16] |
C. Y. Kao, Y. Lou and W. Shen, Random dispersal vs non-local dispersal, Discrete Contin. Dyn. Syst., 26 (2010), 551-596.
doi: 10.3934/dcds.2010.26.551. |
[17] |
C. Y. Kao, Y. Lou and W. Shen,
Evolution of mixed dispersal in periodic environments, Discrete Contin. Dyn. Syst. Ser. B, 17 (2012), 2047-2072.
doi: 10.3934/dcdsb.2012.17.2047. |
[18] |
W. Li, G. Lin, C. Ma and F. Yang,
Traveling wave solutions of a nonlocal delayed SIR model without outbreak threshold, Discrete Contin. Dyn. Syst. Ser. B, 19 (2014), 467-484.
doi: 10.3934/dcdsb.2014.19.467. |
[19] |
Y. Li, W. Li and G. Lin,
Traveling waves of a delayed diffusive SIR epidemic model, Commun. Pure Appl. Anal., 14 (2015), 1001-1022.
doi: 10.3934/cpaa.2015.14.1001. |
[20] |
Y. Li, W. Li and F. Yang,
Traveling waves for a nonlocal dispersal SIR model with delay and external supplies, Appl. Math. Comput., 247 (2014), 723-740.
doi: 10.1016/j.amc.2014.09.072. |
[21] |
Y. Li, W. Li and G. Zhang,
Stability and uniqueness of traveling waves of a non-local dispersal SIR epidemic model, Dyn. Partial Differ. Equ., 14 (2017), 87-123.
doi: 10.4310/DPDE.2017.v14.n2.a1. |
[22] |
G. Lin,
Minimal wave speed of competitive diffusive systems with time delays, Appl. Math. Lett., 76 (2018), 164-169.
doi: 10.1016/j.aml.2017.08.018. |
[23] |
Z. Ma and R. Yuan, Traveling wave solutions of a nonlocal dispersal SIRS model with spatio-temporal delay, Int. J. Biomath., 10 (2017), 5.
doi: 10.1142/S1793524517500711. |
[24] |
S. Pan, W. Li and G. Lin,
Travelling wave fronts in nonlocal reaction-diffusion systems and applications, Z. Angew. Math. Phys., 60 (2009), 377-392.
doi: 10.1007/s00033-007-7005-y. |
[25] |
N. Rawal and W. Shen,
Criteria for the existence and lower bounds of principal eigenvalues of time periodic nonlocal dispersal operators and applications, J. Dyn. Differ. Equ., 24 (2012), 927-954.
doi: 10.1007/s10884-012-9276-z. |
[26] |
W. Shen and A. Zhang,
Spreading speeds for monostable equations with nonlocal dispersal in space periodic habitats, J. Differ. Equ., 249 (2010), 747-795.
doi: 10.1016/j.jde.2010.04.012. |
[27] | N. Shigesada and K. Kawasaki, Biological Invasions: Theory and Practice, Oxford University Press, Oxford, 1997. Google Scholar |
[28] |
H. Thieme and X. Zhao,
Asymptotic speeds of spread and traveling waves for integral equations and delayed reaction-diffusion models, J. Differ. Equ., 195 (2003), 430-470.
doi: 10.1016/S0022-0396(03)00175-X. |
[29] |
J. Wang, W. Li and F. Yang,
Traveling waves in a nonlocal dispersal SIR model with nonlocal delayed transmission, Commun. Nonlinear Sci., 27 (2015), 136-152.
doi: 10.1016/j.cnsns.2015.03.005. |
[30] |
H. Wang and X. Wang,
Traveling waves phenomena in a Kemack-Mckendrick SIR model, J. Dyn. Differ. Equ., 28 (2016), 143-166.
doi: 10.1007/s10884-015-9506-2. |
[31] |
Z. Wang and J. Wu,
Travelling waves of a diffusive Kermack-Mckendrick epidemic model with non-local delayed transmission, Proc. R. Soc. A - Math. Phys. Eng. Sci., 466 (2010), 237-261.
doi: 10.1098/rspa.2009.0377. |
[32] |
X. Wang, H. Wang and J. Wu,
Traveling waves of diffusive predator-prey systems: disease outbreak propagation, Discret. Contin. Dyn. Syst., 32 (2012), 3303-3324.
doi: 10.3934/dcds.2012.32.3303. |
[33] |
P. Weng and X. Zhao,
Spreading speed and traveling waves for a multi-type SIS epidemic model, J. Differ. Equ., 229 (2006), 270-296.
doi: 10.1016/j.jde.2006.01.020. |
[34] |
D. V. Widder, The Laplace Transform, Princeton University Press, Princeton, 1941.
![]() |
[35] |
C. Wu,
Existence of traveling waves with the critical speed for a discrete diffusive epidemic model, J. Differ. Equ., 262 (2017), 272-282.
doi: 10.1016/j.jde.2016.09.022. |
[36] |
C. Wu and P. Weng,
Asymptotic speed of propagation and traveling wavefronts for a SIR epidemic model, Discrete Contin. Dyn. Syst. Ser. B, 15 (2012), 867-892.
doi: 10.3934/dcdsb.2011.15.867. |
[37] |
J. Wu and X. Zou, Traveling wave fronts of reaction-diffusion systems with delay, J. Dyn. Differ. Equ., 13 (2001), 651–687. [Erratum in J. Dyn. Differ. Equ. 20 (2008), 531–533].
doi: 10.1007/s10884-007-9090-1. |
[38] |
F. Yang and W. Li,
Traveling waves in a nonlocal dispersal SIR model with critical wave speed, J. Math. Anal. Appl., 458 (2018), 1131-1146.
doi: 10.1016/j.jmaa.2017.10.016. |
[39] |
F. Yang, W. Li and J. Wang, Wave propagation for a class of non-local dispersal non-cooperative systems, Proc. R. Soc. Edinb. Sect. A Math., (2019), 1-33
doi: 10.1017/prm.2019.4. |
[40] |
F. Yang, W. Li and Z. Wang,
Traveling waves in a nonlocal dispersal SIR epidemic model, Nonlinear Anal. Real World Appl., 23 (2015), 129-147.
doi: 10.1016/j.nonrwa.2014.12.001. |
[41] |
F. Yang, Y. Li, W. Li and Z. Wang,
Traveling waves in a nonlocal dispersal Kermack-Mckendric epidemic model, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 1969-1993.
doi: 10.3934/dcdsb.2013.18.1969. |
[42] |
F. Zhan, G. Huo, Q. Liu, G. Sun and Z. Jin,
Existence of traveling waves in nonlinear SI epidemic models, J. Biol. Syst., 17 (2009), 643-657.
doi: 10.1142/S0218339009003101. |
[43] |
X. Zhao and W. Wang,
Fisher waves in an epidemic model, Discrete Contin. Dyn. Syst. Ser. B, 4 (2004), 1117-1128.
doi: 10.3934/dcdsb.2004.4.1117. |
[44] |
L. Zhao and Z. Wang,
Traveling wave fronts in a diffusive epidemic model with multiple parallel infectious stages, IMA J. Appl. Math., 81 (2016), 795-823.
doi: 10.1093/imamat/hxw033. |
[45] |
L. Zhao, Z. Wang and S. Ruan,
Traveling wave solutions in a two-group SIR epidemic model with constant recruitment, J. Math. Biol., 1 (2018), 1-45.
doi: 10.1007/s00285-018-1227-9. |
[46] |
Z. Zhen, J. Wei, J. Zhou and L. Tian,
Wave propagation in a nonlocal diffusion epidemic model with nonlocal delayed effects, Appl. Math. Comput., 339 (2018), 15-37.
doi: 10.1016/j.amc.2018.07.007. |
[47] |
Z. Zhen, J. Wei, L. Tian, J. Zhou and W. Chen,
Wave propagation in a diffusive epidemic model with spatiotemporal delay, Math. Meth. Appl. Sci., 41 (2018), 7074-7098.
doi: 10.1002/mma.5216. |
[48] |
J. Zhou, L. Song, J. Wei and H. Xu,
Critical traveling waves in a diffusive disease model, J. Math. Anal. Appl., 476 (2019), 522-538.
doi: 10.1016/j.jmaa.2019.03.066. |
[49] |
J. Zhou, J. Xu, J. Wei and H. Xu,
Existence and non-existence of traveling wave solutions for a nonlocal dispersal SIR epidemic model with nonlinear incidence rate, Nonlinear Anal. Real World Appl., 41 (2018), 204-231.
doi: 10.1016/j.nonrwa.2017.10.016. |
[50] |
J. Zhou and Y. Yang,
Traveling waves for a nonlocal dispersal SIR model with general nonlinear incidence rate and spatio-temporal delay, Discrete Contin. Dyn. Syst. Ser. B, 22 (2017), 1719-1741.
doi: 10.3934/dcdsb.2017082. |
[1] |
Cicely K. Macnamara, Mark A. J. Chaplain. Spatio-temporal models of synthetic genetic oscillators. Mathematical Biosciences & Engineering, 2017, 14 (1) : 249-262. doi: 10.3934/mbe.2017016 |
[2] |
Shanshan Chen, Junping Shi, Guohong Zhang. Spatial pattern formation in activator-inhibitor models with nonlocal dispersal. Discrete & Continuous Dynamical Systems - B, 2021, 26 (4) : 1843-1866. doi: 10.3934/dcdsb.2020042 |
[3] |
Guo-Bao Zhang, Ruyun Ma, Xue-Shi Li. Traveling waves of a Lotka-Volterra strong competition system with nonlocal dispersal. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 587-608. doi: 10.3934/dcdsb.2018035 |
[4] |
Shangzhi Li, Shangjiang Guo. Permanence and extinction of a stochastic SIS epidemic model with three independent Brownian motions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2693-2719. doi: 10.3934/dcdsb.2020201 |
[5] |
Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367 |
[6] |
Yunfei Lv, Rong Yuan, Yuan He. Wavefronts of a stage structured model with state--dependent delay. Discrete & Continuous Dynamical Systems - A, 2015, 35 (10) : 4931-4954. doi: 10.3934/dcds.2015.35.4931 |
[7] |
José Raúl Quintero, Juan Carlos Muñoz Grajales. On the existence and computation of periodic travelling waves for a 2D water wave model. Communications on Pure & Applied Analysis, 2018, 17 (2) : 557-578. doi: 10.3934/cpaa.2018030 |
[8] |
Jian Yang, Bendong Lou. Traveling wave solutions of competitive models with free boundaries. Discrete & Continuous Dynamical Systems - B, 2014, 19 (3) : 817-826. doi: 10.3934/dcdsb.2014.19.817 |
[9] |
Mikhail Gilman, Semyon Tsynkov. Statistical characterization of scattering delay in synthetic aperture radar imaging. Inverse Problems & Imaging, 2020, 14 (3) : 511-533. doi: 10.3934/ipi.2020024 |
[10] |
Valery Y. Glizer. Novel Conditions of Euclidean space controllability for singularly perturbed systems with input delay. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 307-320. doi: 10.3934/naco.2020027 |
[11] |
Manoel J. Dos Santos, Baowei Feng, Dilberto S. Almeida Júnior, Mauro L. Santos. Global and exponential attractors for a nonlinear porous elastic system with delay term. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2805-2828. doi: 10.3934/dcdsb.2020206 |
[12] |
Jianping Gao, Shangjiang Guo, Wenxian Shen. Persistence and time periodic positive solutions of doubly nonlocal Fisher-KPP equations in time periodic and space heterogeneous media. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2645-2676. doi: 10.3934/dcdsb.2020199 |
[13] |
Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189 |
[14] |
Habib Ammari, Josselin Garnier, Vincent Jugnon. Detection, reconstruction, and characterization algorithms from noisy data in multistatic wave imaging. Discrete & Continuous Dynamical Systems - S, 2015, 8 (3) : 389-417. doi: 10.3934/dcdss.2015.8.389 |
[15] |
Zhi-Min Chen, Philip A. Wilson. Stability of oscillatory gravity wave trains with energy dissipation and Benjamin-Feir instability. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2329-2341. doi: 10.3934/dcdsb.2012.17.2329 |
[16] |
Xiaohu Wang, Dingshi Li, Jun Shen. Wong-Zakai approximations and attractors for stochastic wave equations driven by additive noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2829-2855. doi: 10.3934/dcdsb.2020207 |
[17] |
Jan Prüss, Laurent Pujo-Menjouet, G.F. Webb, Rico Zacher. Analysis of a model for the dynamics of prions. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 225-235. doi: 10.3934/dcdsb.2006.6.225 |
[18] |
Johannes Kellendonk, Lorenzo Sadun. Conjugacies of model sets. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 3805-3830. doi: 10.3934/dcds.2017161 |
[19] |
Didier Bresch, Thierry Colin, Emmanuel Grenier, Benjamin Ribba, Olivier Saut. A viscoelastic model for avascular tumor growth. Conference Publications, 2009, 2009 (Special) : 101-108. doi: 10.3934/proc.2009.2009.101 |
[20] |
Ondrej Budáč, Michael Herrmann, Barbara Niethammer, Andrej Spielmann. On a model for mass aggregation with maximal size. Kinetic & Related Models, 2011, 4 (2) : 427-439. doi: 10.3934/krm.2011.4.427 |
2019 Impact Factor: 1.105
Tools
Metrics
Other articles
by authors
[Back to Top]