In this paper, we investigate the existence and nonexistence of traveling wave solutions in a nonlocal dispersal epidemic model with spatio-temporal delay. It is shown that this model admits a nontrivial positive traveling wave solution when the basic reproduction number $ R_0>1 $ and the wave speed $ c\geq c^* $ ($ c^* $ is the critical speed) and this model has no traveling wave solutions when $ R_0\leq1 $ or $ c<c^* $. This indicates that $ c^* $ is the minimal wave speed.
Citation: |
[1] | S. Ai and R. Albashaireh, Traveling waves in spatial SIRS models, J. Dyn. Differ. Equ., 26 (2014), 143-164. doi: 10.1007/s10884-014-9348-3. |
[2] | F. Andreu-Vaillo, J. M. Mazón, J. D. Rossi and J. Toledo-Melero, Nonlocal Diffusion Problems, Mathematical Surveys and Monographs, Vol. 165, American Mathematical Society, Providence, RI, 2010. doi: 10.1090/surv/165. |
[3] | F. Brauer and C. Castillo-Chvez, Mathematical Models in Population Biology and Epidemiology, 2$^nd$ edition, Springer, Berlin, 2012. doi: 10.1007/978-1-4614-1686-9. |
[4] | F. Brauer, P. van den Driessche and J. Wu, Mathematical Epidemiology, Lecture Notes in Mathematics, Vol. 1945, Springer, New York, 2008. doi: 10.1007/978-3-540-78911-6. |
[5] | Y. Chen, J. Guo and F. Hamel, Traveling waves for a lattice dynamical system arising in a diffusive endemic model, Nonlinearity, 30 (2017), 2334-2359. doi: 10.1088/1361-6544/aa6b0a. |
[6] | H. Cheng and R. Yuan, Traveling wave solutions for a nonlocal dispersal Kermack-Mckendrick epidemic model with spatio-temporal delay, Sci. Sin. Math., 45 (2015), 765-788. doi: 10.1007/s00028-016-0362-2. |
[7] | W. Ding, W. Huang and S. Kansakar, Traveling wave solutions for a diffusive SIS epidemic model, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 1291-1304. doi: 10.3934/dcdsb.2013.18.1291. |
[8] | A. Ducrot, M. Langlais and P. Magal, Qualitative analysis and travelling wave solutions for the SI model with vertical transmission, Commun. Pure Appl. Anal., 11 (2012), 97-113. doi: 10.3934/cpaa.2012.11.97. |
[9] | A. Ducrot and P. Magal, Traveling wave solutions for an infection-age structured epidemic model with external supplies, Nonlinearity, 23 (2011), 2891-2911. doi: 10.1088/0951-7715/24/10/012. |
[10] | P. Fife, Some Nonclassic Trends in Parabolic and Parabolic-like Evolutions, Trends in Nonlinear Analysis, Springer, Berlin, 2003. doi: 10.1007/978-3-662-05281-5_3. |
[11] | S. Fu, Traveling waves for a diffusive SIR model with delay, J. Math. Anal. Appl., 435 (2016), 20-37. doi: 10.1016/j.jmaa.2015.09.069. |
[12] | J. He and J. Tsai, Traveling waves in the Kermack-Mckendrick epidemic model with latent period, Z. Angew. Math. Phys., 70 (2019), 27. doi: 10.1007/s00033-018-1072-0. |
[13] | H. Hethcote, The mathematics of infectious diseases, SIAM Rev., 42 (2000), 599-653. doi: 10.1137/S0036144500371907. |
[14] | Y. Hosono and B. Ilyas, Traveling waves for a simple diffusive SIR epidemic model, Math. Mod. Meth. Appl. S., 5 (1995), 935-966. doi: 10.1142/S0218202595000504. |
[15] | V. Hutson, S. Martinez, K. Mischailow and G. T. Vickers, The evolution of dispersal, J. Math. Biol., 47 (2003), 483-517. doi: 10.1007/s00285-003-0210-1. |
[16] | C. Y. Kao, Y. Lou and W. Shen, Random dispersal vs non-local dispersal, Discrete Contin. Dyn. Syst., 26 (2010), 551-596. doi: 10.3934/dcds.2010.26.551. |
[17] | C. Y. Kao, Y. Lou and W. Shen, Evolution of mixed dispersal in periodic environments, Discrete Contin. Dyn. Syst. Ser. B, 17 (2012), 2047-2072. doi: 10.3934/dcdsb.2012.17.2047. |
[18] | W. Li, G. Lin, C. Ma and F. Yang, Traveling wave solutions of a nonlocal delayed SIR model without outbreak threshold, Discrete Contin. Dyn. Syst. Ser. B, 19 (2014), 467-484. doi: 10.3934/dcdsb.2014.19.467. |
[19] | Y. Li, W. Li and G. Lin, Traveling waves of a delayed diffusive SIR epidemic model, Commun. Pure Appl. Anal., 14 (2015), 1001-1022. doi: 10.3934/cpaa.2015.14.1001. |
[20] | Y. Li, W. Li and F. Yang, Traveling waves for a nonlocal dispersal SIR model with delay and external supplies, Appl. Math. Comput., 247 (2014), 723-740. doi: 10.1016/j.amc.2014.09.072. |
[21] | Y. Li, W. Li and G. Zhang, Stability and uniqueness of traveling waves of a non-local dispersal SIR epidemic model, Dyn. Partial Differ. Equ., 14 (2017), 87-123. doi: 10.4310/DPDE.2017.v14.n2.a1. |
[22] | G. Lin, Minimal wave speed of competitive diffusive systems with time delays, Appl. Math. Lett., 76 (2018), 164-169. doi: 10.1016/j.aml.2017.08.018. |
[23] | Z. Ma and R. Yuan, Traveling wave solutions of a nonlocal dispersal SIRS model with spatio-temporal delay, Int. J. Biomath., 10 (2017), 5. doi: 10.1142/S1793524517500711. |
[24] | S. Pan, W. Li and G. Lin, Travelling wave fronts in nonlocal reaction-diffusion systems and applications, Z. Angew. Math. Phys., 60 (2009), 377-392. doi: 10.1007/s00033-007-7005-y. |
[25] | N. Rawal and W. Shen, Criteria for the existence and lower bounds of principal eigenvalues of time periodic nonlocal dispersal operators and applications, J. Dyn. Differ. Equ., 24 (2012), 927-954. doi: 10.1007/s10884-012-9276-z. |
[26] | W. Shen and A. Zhang, Spreading speeds for monostable equations with nonlocal dispersal in space periodic habitats, J. Differ. Equ., 249 (2010), 747-795. doi: 10.1016/j.jde.2010.04.012. |
[27] | N. Shigesada and K. Kawasaki, Biological Invasions: Theory and Practice, Oxford University Press, Oxford, 1997. |
[28] | H. Thieme and X. Zhao, Asymptotic speeds of spread and traveling waves for integral equations and delayed reaction-diffusion models, J. Differ. Equ., 195 (2003), 430-470. doi: 10.1016/S0022-0396(03)00175-X. |
[29] | J. Wang, W. Li and F. Yang, Traveling waves in a nonlocal dispersal SIR model with nonlocal delayed transmission, Commun. Nonlinear Sci., 27 (2015), 136-152. doi: 10.1016/j.cnsns.2015.03.005. |
[30] | H. Wang and X. Wang, Traveling waves phenomena in a Kemack-Mckendrick SIR model, J. Dyn. Differ. Equ., 28 (2016), 143-166. doi: 10.1007/s10884-015-9506-2. |
[31] | Z. Wang and J. Wu, Travelling waves of a diffusive Kermack-Mckendrick epidemic model with non-local delayed transmission, Proc. R. Soc. A - Math. Phys. Eng. Sci., 466 (2010), 237-261. doi: 10.1098/rspa.2009.0377. |
[32] | X. Wang, H. Wang and J. Wu, Traveling waves of diffusive predator-prey systems: disease outbreak propagation, Discret. Contin. Dyn. Syst., 32 (2012), 3303-3324. doi: 10.3934/dcds.2012.32.3303. |
[33] | P. Weng and X. Zhao, Spreading speed and traveling waves for a multi-type SIS epidemic model, J. Differ. Equ., 229 (2006), 270-296. doi: 10.1016/j.jde.2006.01.020. |
[34] | D. V. Widder, The Laplace Transform, Princeton University Press, Princeton, 1941. |
[35] | C. Wu, Existence of traveling waves with the critical speed for a discrete diffusive epidemic model, J. Differ. Equ., 262 (2017), 272-282. doi: 10.1016/j.jde.2016.09.022. |
[36] | C. Wu and P. Weng, Asymptotic speed of propagation and traveling wavefronts for a SIR epidemic model, Discrete Contin. Dyn. Syst. Ser. B, 15 (2012), 867-892. doi: 10.3934/dcdsb.2011.15.867. |
[37] | J. Wu and X. Zou, Traveling wave fronts of reaction-diffusion systems with delay, J. Dyn. Differ. Equ., 13 (2001), 651–687. [Erratum in J. Dyn. Differ. Equ. 20 (2008), 531–533]. doi: 10.1007/s10884-007-9090-1. |
[38] | F. Yang and W. Li, Traveling waves in a nonlocal dispersal SIR model with critical wave speed, J. Math. Anal. Appl., 458 (2018), 1131-1146. doi: 10.1016/j.jmaa.2017.10.016. |
[39] | F. Yang, W. Li and J. Wang, Wave propagation for a class of non-local dispersal non-cooperative systems, Proc. R. Soc. Edinb. Sect. A Math., (2019), 1-33 doi: 10.1017/prm.2019.4. |
[40] | F. Yang, W. Li and Z. Wang, Traveling waves in a nonlocal dispersal SIR epidemic model, Nonlinear Anal. Real World Appl., 23 (2015), 129-147. doi: 10.1016/j.nonrwa.2014.12.001. |
[41] | F. Yang, Y. Li, W. Li and Z. Wang, Traveling waves in a nonlocal dispersal Kermack-Mckendric epidemic model, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 1969-1993. doi: 10.3934/dcdsb.2013.18.1969. |
[42] | F. Zhan, G. Huo, Q. Liu, G. Sun and Z. Jin, Existence of traveling waves in nonlinear SI epidemic models, J. Biol. Syst., 17 (2009), 643-657. doi: 10.1142/S0218339009003101. |
[43] | X. Zhao and W. Wang, Fisher waves in an epidemic model, Discrete Contin. Dyn. Syst. Ser. B, 4 (2004), 1117-1128. doi: 10.3934/dcdsb.2004.4.1117. |
[44] | L. Zhao and Z. Wang, Traveling wave fronts in a diffusive epidemic model with multiple parallel infectious stages, IMA J. Appl. Math., 81 (2016), 795-823. doi: 10.1093/imamat/hxw033. |
[45] | L. Zhao, Z. Wang and S. Ruan, Traveling wave solutions in a two-group SIR epidemic model with constant recruitment, J. Math. Biol., 1 (2018), 1-45. doi: 10.1007/s00285-018-1227-9. |
[46] | Z. Zhen, J. Wei, J. Zhou and L. Tian, Wave propagation in a nonlocal diffusion epidemic model with nonlocal delayed effects, Appl. Math. Comput., 339 (2018), 15-37. doi: 10.1016/j.amc.2018.07.007. |
[47] | Z. Zhen, J. Wei, L. Tian, J. Zhou and W. Chen, Wave propagation in a diffusive epidemic model with spatiotemporal delay, Math. Meth. Appl. Sci., 41 (2018), 7074-7098. doi: 10.1002/mma.5216. |
[48] | J. Zhou, L. Song, J. Wei and H. Xu, Critical traveling waves in a diffusive disease model, J. Math. Anal. Appl., 476 (2019), 522-538. doi: 10.1016/j.jmaa.2019.03.066. |
[49] | J. Zhou, J. Xu, J. Wei and H. Xu, Existence and non-existence of traveling wave solutions for a nonlocal dispersal SIR epidemic model with nonlinear incidence rate, Nonlinear Anal. Real World Appl., 41 (2018), 204-231. doi: 10.1016/j.nonrwa.2017.10.016. |
[50] | J. Zhou and Y. Yang, Traveling waves for a nonlocal dispersal SIR model with general nonlinear incidence rate and spatio-temporal delay, Discrete Contin. Dyn. Syst. Ser. B, 22 (2017), 1719-1741. doi: 10.3934/dcdsb.2017082. |