In this paper we study the existence of ground state solution and concentration of maxima for a class of strongly indefinite problem like
$ \begin{cases} -\Delta u+V(x)u = A(\epsilon x)f(u) \quad \mbox{in} \quad \mathbb{R}^{N}, \\ u\in H^{1}( \mathbb{R}^{N}), \end{cases} \qquad\qquad\qquad{(P)_{\epsilon}} $
where
$ 0 < \inf\limits_{x \in \mathbb{R}^{N}}A(x)\leq \lim\limits_{|x|\rightarrow+\infty}A(x)<\sup\limits_{x \in \mathbb{R}^{N}}A(x). $
Citation: |
[1] | C. O. Alves and G. F. Germano, Ground state solution for a class of indefinite variational problems with critical growth, J. Differ. Equ., 265 (2018), 444-477. doi: 10.1016/j.jde.2018.02.039. |
[2] | A. Ambrosetti and A. Malchiodi, Concentration phenomena for for NLS: recent results and new perspectives, in Perspectives in Nonlinear Partial Differential Equations, Contemporary Mathematics, Vol. 446, American Mathematical Society, Providence, RI, (2007), 19–30. doi: 10.1090/conm/446/08624. |
[3] | A. Ambrosetti, M. Badiale and S. Cingolani, Semiclassical states of nonlinear Schrödinger equations, Arch. Ration. Mech. Anal., 140 (1997), 285-300. doi: 10.1007/s002050050067. |
[4] | H. Brézis and E. H. Lieb, A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc., 88 (1983), 486-490. doi: 10.2307/2044999. |
[5] | J. Chabrowski and A. Szulkin, On a semilinear Schrödinger equation with critical Sobolev exponent, Proc. Amer. Math. Soc., 130 (2001), 85-93. doi: 10.1090/S0002-9939-01-06143-3. |
[6] | M. del Pino and P. L. Felmer, Local mountain pass for semilinear elliptic problems in unbounded domains, Calc. Var. Partial Differ. Equ., 4 (1996), 121-137. doi: 10.1007/BF01189950. |
[7] | J. M. B. do Ó and B. Ruf, On a Schrödinger equation with periodic potential and critical growth in $\mathbb{R}^2$, Nonlinear Differ. Equ. Appl., 13 (2006), 167-192. doi: 10.1007/s00030-005-0034-3. |
[8] | A. Floer and A. Weinstein, Nonspreading wave packets for the cubic Schrödinger equation with a bounded potential, J. Funct. Anal., 69 (1986), 397-408. doi: 10.1016/0022-1236(86)90096-0. |
[9] | M. F. Furtado and R. Marchi, Existence of solutions to asymptotically periodic Schrödinger equations, Electron. J. Differ. Equ., 2017 (2017), 1-7. |
[10] | W. Kryszewski and A. Szulkin, Generalized linking theorem with an application to a semilinear Schrödinger equation, Adv. Differ. Equ., 3 (1998), 441-472. |
[11] | P. L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case. Part Ⅱ, Ann. Inst. Henri Poincare - Anal. Non Lineaire, 4 (1984), 223-283. |
[12] | G. B. Li and A. Szulkin, An asymptotically periodic Schrödinger equation with indefinite linear part, Commun. Contemp. Math., 4 (2002), 763-776. doi: 10.1142/S0219199702000853. |
[13] | Y. G. Oh, Existence of semi-classical bound states of nonlinear Schrödinger equations with potentials of the class $(V)_\alpha$, Commun. Partial Differ. Equ., 13 (1988), 1499-1519. doi: 10.1080/03605308808820585. |
[14] | Y. G. Oh, On positive multi-lump bound states of nonlinear Schrödinger equations under multiple well potential, Commun. Math. Phys., 131 (1990), 223-253. doi: 10.1007/BF02161413. |
[15] | A. Pankov, Periodic nonlinear Schrödinger equation with application to photonic crystals, Milan J. Math., 73 (2005), 259-287. doi: 10.1007/s00032-005-0047-8. |
[16] | A. Pankov and K. Pflüger, On a semilinear Schrödinger equation with periodic potential, Nonlinear Anal. Theory Methods Appl., 33 (1998), 593-609. doi: 10.1016/S0362-546X(97)00689-5. |
[17] | P. H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, Reginal Conference Series in Mathematics, Vol. 65, American Mathematical Society, Providence, RI, 1986. doi: 10.1090/cbms/065. |
[18] | P. H. Rabinowitz, A note on semilinear elliptic equation on $\mathbb{R}^N$, Nonlinear Analysis: A Tribute in Honour of G. Prodi, Quad. Scu. Norm. Super. Pisa., (1991), 307–318. |
[19] | P. H. Rabinowitz, On a class of nonlinear Schrödinger equations, Z. Angew. Math. Phys., 43 (1992), 270-291. doi: 10.1007/BF00946631. |
[20] | A. Szulkin and T. Weth, Ground state solutions for some indefinite variational problems, J. Funct. Anal., 257 (2009), 3802-3822. doi: 10.1016/j.jfa.2009.09.013. |
[21] | A. Szulkin and T. Weth, The method of Nehari manifold, in Handbook of Nonconvex Analysis and Applications, International Press, (2010), 597–632. |
[22] | M. Schechter, Linking Methods in Critical Point Theory, Birkhäuser, Boston, 1999. doi: 10.1007/978-1-4612-1596-7. |
[23] | M. Schechter, Nonlinear Schrödinger operators with zero in the spectrum, Z. Angew. Math. Phys., 66 (2015), 2125-2141. doi: 10.1007/s00033-015-0511-4. |
[24] | M. Schechter and W. Zou, Weak linking theorems and Schrödinger equations with critical Sobolev exponent, ESAIM Control Optim. Calc. Var., 9 (2003), 601–619. (electronic) doi: 10.1051/cocv:2003029. |
[25] | X. H. Tang, Non-Nehari manifold method for asymptotically periodic Schrödinger equations, Sci. China Math., 58 (2015), 715-728. doi: 10.1007/s11425-014-4957-1. |
[26] | X. H. Tang, New super-quadratic conditions for asymptotically periodic Schrödinger equation, Canadian Math. Bull., 60 (2017), 422-435. doi: 10.4153/CMB-2016-090-2. |
[27] | X. Wang, On concentration of positive bound states of nonlinear Schrödinger equations, Commun. Math. Phys., 53 (1993), 229-244. |
[28] | M. Willem, Minimax Theorems, Birkhauser, 1996. doi: 10.1007/978-1-4612-4146-1. |
[29] | M. Willem and W. Zou, On a Schrödinger equation with periodic potential and spectrum point zero, Indiana Univ. Math. J., 52 (2003), 109-132. doi: 10.1512/iumj.2003.52.2273. |
[30] | M. Yang, Ground state solutions for a periodic Schrödinger equation with superlinear nonlinearities, Nonlinear Anal., 72 (2010), 2620-2627. doi: 10.1016/j.na.2009.11.009. |
[31] | H. Zhang, J. Xu and F. Zhang, Ground state solutions asymptotically periodic Schrödinger equations with indefinite linear part, Math. Meth. Appl. Sci., 38 (2015), 113-122. doi: 10.1002/mma.3054. |
[32] | H. Zhang, J. Xu and F. Zhang, On a class of semilinear Schrödinger equation with indefinite linear part, J. Math. Anal. Appl., 414 (2014), 710-724. doi: 10.1016/j.jmaa.2014.01.001. |