Our aim in this paper is to prove the weak-strong uniqueness property of solutions to a hydrodynamic system that models the dynamics of incompressible magneto-viscoelastic flows. The proof is based on the relative energy approach for the compressible Navier-Stokes system.
Citation: |
[1] | B. Benešová, J. Forster, C. García-Cervera, C. Liu and A. Schlömerkemper, Analysis of the flow of magnetoelastic materials, Proc. Appl. Meth. Mech., 16 (2016), 663-664. doi: 10.1002/pamm.201610320. |
[2] | B. Benešová, J. Forster, C. Liu and A. Schlömerkemper, Existence of weak solutions to an evolutionary model for magnetoelasticity, SIAM J. Math. Anal., 50 (2018), 1200-1236. doi: 10.1137/17M1111486. |
[3] | C. Cavaterra, E. Rocca and H. Wu, Global weak solution and blow-up criterion of the general Ericksen-Leslie system for nematic liquid crystal flows, J. Differ. Equ., 255 (2013), 24-57. doi: 10.1016/j.jde.2013.03.009. |
[4] | Y. Chen and P. Zhang, The global existence of small solutions to the incompressible viscoelastic fluid system in 2 and 3 space dimensions, Comm. Partial Differ. Equ., 31 (2006), 1793-1810. doi: 10.1080/03605300600858960. |
[5] | E. Emmrich and R. Lasarzik, Weak-strong uniqueness for the general Ericksen-Leslie system in three dimensions, Discrete Contin. Dyn. Syst., 38 (2018), 4617-4635. doi: 10.3934/dcds.2018202. |
[6] | E. Feireisl, Y. Lu and A. Novotný, Weak-strong uniqueness for the compressible Navier-Stokes equations with a hard-sphere pressure law, Sci. China Math., 61 (2018), 2003-2016. doi: 10.1007/s11425-017-9272-7. |
[7] | E. Feireisl, B. J. Jin and A. Novotný, Relative entropies, suitable weak solutions, and weak-strong uniqueness for the compressible Navier-Stokes system, J. Math. Fluid Mech., 14 (2012), 717-730. doi: 10.1007/s00021-011-0091-9. |
[8] | J. Forster, Variational Approach to the Modeling and Analysis of Magnetoelastic Materials, Ph.D thesis, University of Würzburg, 2016. |
[9] | P. Germain, Weak-strong uniqueness for the isentropic compressible Navier-Stokes system, J. Math. Fluid Mech., 13 (2011), 137-146. doi: 10.1007/s00021-009-0006-1. |
[10] | M. Grasselli and H. Wu, Long-time behavior for a nematic liquid crystal model with asymptotic stabilizing boundary condition and external force, SIAM J. Math. Anal., 45 (2013), 965-1002. doi: 10.1137/120866476. |
[11] | X. P. Hu and F. H. Lin, Global solutions of two-dimensional incompressible viscoelastic flows with discontinuous initial data, Commun. Pure Appl. Math., 69 (2016), 372-404. doi: 10.1002/cpa.21561. |
[12] | X. P. Hu and H. Wu, Long-time behavior and weak-strong uniqueness for incompressible viscoelastic flows, Discrete Contin. Dyn. Syst., 35 (2015), 3437-3461. doi: 10.3934/dcds.2015.35.3437. |
[13] | Y. Hyon, D. Y. Kwak and C. Liu, Energetic variational approach in complex fluids: maximum dissipation principle, Discrete Contin. Dyn. Syst., 26 (2010), 1291-1304. doi: 10.3934/dcds.2010.26.1291. |
[14] | N. Jing, H. Liu, and Y. L. Luo, Global classical solutions to an evolutionary model for magnetoelasticity, preprint, arXiv: 1904.09531v1. |
[15] | M. Kalousek, On dissipative solutions to a system arising in viscoelasticity, preprint, arXiv: 1903.03635. doi: 10.1007/s00021-019-0459-9. |
[16] | M. Kalousek, J. Kortum and A. Schlömerkemper, Mathematical analysis of weak and strong solutions to an evolutionary model for magnetoviscoelasticity, preprint, arXiv: 1904.07179. |
[17] | Z. Lei, C. Liu and Y. Zhou, Global solutions for incompressible viscoelastic fluids, Arch. Ration. Mech. Anal., 188 (2008), 371-398. doi: 10.1007/s00205-007-0089-x. |
[18] | Z. Lei and Y. Zhou, Global existence of classical solutions for 2D Oldroyd model via the incompressible limit, SIAM J. Math. Anal., 37 (2005), 797-814. doi: 10.1137/040618813. |
[19] | F. H. Lin and C. Liu, Nonparabolic dissipative systems modeling the flow of liquid crystals, Commun. Pure Appl. Math., 48 (1995), 501-537. doi: 10.1002/cpa.3160480503. |
[20] | F. H. Lin, C. Liu and P. Zhang, On hydrodynamics of viscoelastic fluids, Commun. Pure Appl. Math., 58 (2005), 1437-1471. doi: 10.1002/cpa.20074. |
[21] | F. H. Lin and P. Zhang, On the initial boundary value problem of the incompressible viscoelastic fluid system, Commun. Pure Appl. Math., 61 (2008), 539-558. doi: 10.1002/cpa.20219. |
[22] | C. Liu and N. J. Walkington, An Eulerian description of fluids containing visco-hyperelastic particles, Arch. Ration. Mech. Anal., 159 (2001), 229-252. doi: 10.1007/s002050100158. |
[23] | A. Schlömerkemper and J. Žabensky, Uniqueness of solutions for a mathematical model for magneto-viscoelastic flows, Nonlinearity, 31 (2018), 2989-3012. doi: 10.1088/1361-6544/aaba36. |
[24] | J. Serrin, On the interior regularity of weak solutions of Navier-Stokes equations, Arch. Ration. Mech. Anal., 9 (1962), 187-195. doi: 10.1007/BF00253344. |
[25] | H. Wu, Long-time behavior for nonlinear hydrodynamic system modeling the nematic liquid crystal flows, Discrete Contin. Dyn. Syst., 26 (2010), 379-396. doi: 10.3934/dcds.2010.26.379. |
[26] | H. Wu, X. Xu and C. Liu, On the general Ericksen-Leslie system: Parodi's relation, wellposedness and stability, Arch. Ration. Mech. Anal., 208 (2013), 59-107. doi: 10.1007/s00205-012-0588-2. |
[27] | W. J. Zhao, Local well-posedness and blow-up criteria of magneto-viscoelastic flows, Discrete Contin. Dyn. Syst., 38 (2018), 4637-4655. doi: 10.3934/dcds.2018203. |