• Previous Article
    Computing eigenpairs of two-parameter Sturm-Liouville systems using the bivariate sinc-Gauss formula
  • CPAA Home
  • This Issue
  • Next Article
    Tikhonov regularization with oversmoothing penalty for nonlinear statistical inverse problems
August  2020, 19(8): 4127-4142. doi: 10.3934/cpaa.2020184

First jump time in simulation of sampling trajectories of affine jump-diffusions driven by $ \alpha $-stable white noise

1. 

Research and Evaluation Division, Public Health Wales, Cardiff, UK

2. 

Department of Mathematics, Computational Foundry, Swansea University, Swansea, UK

3. 

Accounting and Finance Department, School of Management, Swansea University, Swansea, UK

* Corresponding author

Received  September 2019 Revised  March 2020 Published  May 2020

The aim of this paper is twofold. Firstly, we derive an explicit expression of the (theoretical) solutions of stochastic differential equations with affine coefficients driven by $ \alpha $-stable white noise. This is done by means of Itô formula. Secondly, we develop a detection algorithm for the first jump time in simulation of sampling trajectories which are described by the solutions. The algorithm is carried out through a multivariate Lagrange interpolation approach. To this end, we utilise a computer simulation algorithm in MATLAB to visualise the sampling trajectories of the jump-diffusions for two combinations of parameters arising in the modelling structure of stochastic differential equations with affine coefficients.

Citation: Jiao Song, Jiang-Lun Wu, Fangzhou Huang. First jump time in simulation of sampling trajectories of affine jump-diffusions driven by $ \alpha $-stable white noise. Communications on Pure & Applied Analysis, 2020, 19 (8) : 4127-4142. doi: 10.3934/cpaa.2020184
References:
[1] D. Applebaum, L$\acute{e}$vy Processes and Stochastic Calculus, Cambridge University Press, 1994.  doi: 10.1017/CBO9780511755323.  Google Scholar
[2]

C. BardgettE. Gourier and M. Leippold, Inferring volatility dynamics and risk premia from the S & P 500 and VIX markets, J. Financ. Econ., 131 (2019), 593-618.   Google Scholar

[3]

A. BarlettaP. Magistris and D. Sloth, It only takes a few moments to hedge options, J. Econ. Dyn. Control, 100 (2019), 251-269.  doi: 10.1016/j.jedc.2018.11.008.  Google Scholar

[4]

O. Barndorff-Nielsen, Normal inverse Gaussian distributions and stochastic volatility modelling, Scand. J. Statist., 24 (1997), 1-13.  doi: 10.1111/1467-9469.00045.  Google Scholar

[5]

J. CampbellS. GiglioC. Polk and R. Turley, An intertemporal CAPM with stochastic volatility, J. Financ. Econ., 128 (2018), 207-233.   Google Scholar

[6] J. Y. CampbellA. W. C. Lo and A. C. MacKinlay, The Econometrics of Financial Markets, Princeton University Press, 1997.   Google Scholar
[7]

J. C. CoxJ. E. Ingersoll and S. A. Ross, A Theory of the Term Structure of Interest Rates, Econometrica, 53 (1985), 385-407.  doi: 10.2307/1911242.  Google Scholar

[8]

M. Dror, P. L$\prime$ecuyer and F. Szidarovszky, Modeling Uncertainty: An Examination of Stochastic Theory, Methods, and Applications, Springer Science & Business Media, 2002. Google Scholar

[9]

H. DuJ. Wu and W. Yang, On the mechanism of CDOs behind the current financial crisis and mathematical modeling with L$\acute{e}$vy distributions, Intel. Inform. Manag., 2 (2010), 149-158.   Google Scholar

[10]

D. DuffieD. Filipović and W. Schachermayer, Affine processes and applications in finance, Ann. Appl. Probab., 13 (2003), 984-1053.  doi: 10.1214/aoap/1060202833.  Google Scholar

[11]

D. DuffieJ. Pan and K. Singleton, Transform Analysis and Asset Pricing for Affine Jump-diffusions, Econometrica, 68 (2000), 1343-1376.  doi: 10.1111/1468-0262.00164.  Google Scholar

[12]

A. FicheJ. C. CexusA. Martin and A. Khenchaf, Features modeling with an $\alpha$-stable distribution: Application to pattern recognition based on continuous belief functions, Inform. Fusion, 14 (2013), 504-520.   Google Scholar

[13]

R. GiacomettiM. BertocchiS. T. Rachev and F. J. Fabozzi, Stable distributions in the Black-Litterman approach to asset allocation, Quant. Finance, 7 (2007), 423-433.  doi: 10.1080/14697680701442731.  Google Scholar

[14]

M. HainM. Uhrig-Homburg and N. Unger, Risk factors and their associated risk premia: An empirical analysis of the crude oil market, J. Bank. Finance, 95 (2018), 44-63.   Google Scholar

[15] A. Janicki and A. Weron, Simulation and Chaotic Behavior of $\alpha$-Stable Stochastic Processes, CRC Press, 1993.   Google Scholar
[16]

S. Janson, Stable Distributions, preprint, 2011. Available from: http://www2.math.uu.se/ svante/papers/sjN12.pdf. Google Scholar

[17]

R. Jarrow, Exploring mispricing in the term structure of CDS spreads, Rev. Finance, 23 (2018), 161-198.   Google Scholar

[18]

W. E. LelandM. S. TaqquW. Willinger and D. W. Wilson, On the self-similar nature of Ethernet traffic, ACM SIGCOMM Comput. Commun. Rev., 23 (1993), 183-193.   Google Scholar

[19]

P. Lévy, Calcul des probabilités, Gauther-Villars, 1925. Google Scholar

[20]

P.Lévy, Théorie de l'addition des variables aléatoires, Gauther-Villars, 1937. Google Scholar

[21]

B. Mandelbrot, The Pareto-L$\acute{e}$vy Law and the Distribution of Income, Int. Econ. Rev., 1 (1960), 79-106.   Google Scholar

[22] G. Samorodnitsky and M. S. Taqqu, Stable Random Processes: Stochastic Models with Infinite Variance, CRC Press, 1994.   Google Scholar
[23]

M.F.Shlesinger, G.M.Zaslavsky and U.Frisch, L$\acute{e}$vy flights and related topics in physics, in Lecture notes in physics, vol. 450, (1995), Springer-Verlag. doi: 10.1007/3-540-59222-9.  Google Scholar

[24]

J. Song and J. Wu, A detection algorithm for the first jump time in sample trajectories of jump-diffusions driven by $\alpha$-stable white noise, Commun. Statist. Theory Meth., 48 (2019), 4888-4902.  doi: 10.1080/03610926.2018.1500602.  Google Scholar

[25]

O. Vasicek, An equilibrium characterization of the term structure, J. Financ. Econ., 52 (1977), 177-188.   Google Scholar

[26]

J. Wu and W. Yang, Valuation of synthetic CDOs with affine jump-diffusion processes involving Lévy stable distributions, Math. Comput. Model., 57 (2013), 570-583.  doi: 10.1016/j.mcm.2012.06.038.  Google Scholar

[27]

V. M. Zolotarev, One-dimensional Stable Distributions, American Mathematical Society, 1986.  Google Scholar

[28]

C. Zopounidis and P. M. Pardalos, Managing in Uncertainty: Theory and Practice, Springer Science & Business Media, 2013. Google Scholar

show all references

References:
[1] D. Applebaum, L$\acute{e}$vy Processes and Stochastic Calculus, Cambridge University Press, 1994.  doi: 10.1017/CBO9780511755323.  Google Scholar
[2]

C. BardgettE. Gourier and M. Leippold, Inferring volatility dynamics and risk premia from the S & P 500 and VIX markets, J. Financ. Econ., 131 (2019), 593-618.   Google Scholar

[3]

A. BarlettaP. Magistris and D. Sloth, It only takes a few moments to hedge options, J. Econ. Dyn. Control, 100 (2019), 251-269.  doi: 10.1016/j.jedc.2018.11.008.  Google Scholar

[4]

O. Barndorff-Nielsen, Normal inverse Gaussian distributions and stochastic volatility modelling, Scand. J. Statist., 24 (1997), 1-13.  doi: 10.1111/1467-9469.00045.  Google Scholar

[5]

J. CampbellS. GiglioC. Polk and R. Turley, An intertemporal CAPM with stochastic volatility, J. Financ. Econ., 128 (2018), 207-233.   Google Scholar

[6] J. Y. CampbellA. W. C. Lo and A. C. MacKinlay, The Econometrics of Financial Markets, Princeton University Press, 1997.   Google Scholar
[7]

J. C. CoxJ. E. Ingersoll and S. A. Ross, A Theory of the Term Structure of Interest Rates, Econometrica, 53 (1985), 385-407.  doi: 10.2307/1911242.  Google Scholar

[8]

M. Dror, P. L$\prime$ecuyer and F. Szidarovszky, Modeling Uncertainty: An Examination of Stochastic Theory, Methods, and Applications, Springer Science & Business Media, 2002. Google Scholar

[9]

H. DuJ. Wu and W. Yang, On the mechanism of CDOs behind the current financial crisis and mathematical modeling with L$\acute{e}$vy distributions, Intel. Inform. Manag., 2 (2010), 149-158.   Google Scholar

[10]

D. DuffieD. Filipović and W. Schachermayer, Affine processes and applications in finance, Ann. Appl. Probab., 13 (2003), 984-1053.  doi: 10.1214/aoap/1060202833.  Google Scholar

[11]

D. DuffieJ. Pan and K. Singleton, Transform Analysis and Asset Pricing for Affine Jump-diffusions, Econometrica, 68 (2000), 1343-1376.  doi: 10.1111/1468-0262.00164.  Google Scholar

[12]

A. FicheJ. C. CexusA. Martin and A. Khenchaf, Features modeling with an $\alpha$-stable distribution: Application to pattern recognition based on continuous belief functions, Inform. Fusion, 14 (2013), 504-520.   Google Scholar

[13]

R. GiacomettiM. BertocchiS. T. Rachev and F. J. Fabozzi, Stable distributions in the Black-Litterman approach to asset allocation, Quant. Finance, 7 (2007), 423-433.  doi: 10.1080/14697680701442731.  Google Scholar

[14]

M. HainM. Uhrig-Homburg and N. Unger, Risk factors and their associated risk premia: An empirical analysis of the crude oil market, J. Bank. Finance, 95 (2018), 44-63.   Google Scholar

[15] A. Janicki and A. Weron, Simulation and Chaotic Behavior of $\alpha$-Stable Stochastic Processes, CRC Press, 1993.   Google Scholar
[16]

S. Janson, Stable Distributions, preprint, 2011. Available from: http://www2.math.uu.se/ svante/papers/sjN12.pdf. Google Scholar

[17]

R. Jarrow, Exploring mispricing in the term structure of CDS spreads, Rev. Finance, 23 (2018), 161-198.   Google Scholar

[18]

W. E. LelandM. S. TaqquW. Willinger and D. W. Wilson, On the self-similar nature of Ethernet traffic, ACM SIGCOMM Comput. Commun. Rev., 23 (1993), 183-193.   Google Scholar

[19]

P. Lévy, Calcul des probabilités, Gauther-Villars, 1925. Google Scholar

[20]

P.Lévy, Théorie de l'addition des variables aléatoires, Gauther-Villars, 1937. Google Scholar

[21]

B. Mandelbrot, The Pareto-L$\acute{e}$vy Law and the Distribution of Income, Int. Econ. Rev., 1 (1960), 79-106.   Google Scholar

[22] G. Samorodnitsky and M. S. Taqqu, Stable Random Processes: Stochastic Models with Infinite Variance, CRC Press, 1994.   Google Scholar
[23]

M.F.Shlesinger, G.M.Zaslavsky and U.Frisch, L$\acute{e}$vy flights and related topics in physics, in Lecture notes in physics, vol. 450, (1995), Springer-Verlag. doi: 10.1007/3-540-59222-9.  Google Scholar

[24]

J. Song and J. Wu, A detection algorithm for the first jump time in sample trajectories of jump-diffusions driven by $\alpha$-stable white noise, Commun. Statist. Theory Meth., 48 (2019), 4888-4902.  doi: 10.1080/03610926.2018.1500602.  Google Scholar

[25]

O. Vasicek, An equilibrium characterization of the term structure, J. Financ. Econ., 52 (1977), 177-188.   Google Scholar

[26]

J. Wu and W. Yang, Valuation of synthetic CDOs with affine jump-diffusion processes involving Lévy stable distributions, Math. Comput. Model., 57 (2013), 570-583.  doi: 10.1016/j.mcm.2012.06.038.  Google Scholar

[27]

V. M. Zolotarev, One-dimensional Stable Distributions, American Mathematical Society, 1986.  Google Scholar

[28]

C. Zopounidis and P. M. Pardalos, Managing in Uncertainty: Theory and Practice, Springer Science & Business Media, 2013. Google Scholar

Figure 1.  $ \alpha_1<1 $ and $ \alpha_2>1 $: Fix $ \lambda $ = 1, $ \mu_1 $ = 1 and $ \mu_2 $ = 10
Figure 2.  $ \alpha_1<1 $ and $ \alpha_2>1 $: $ \lambda $ changes when $ \alpha_1 $ = 0.5 and $ \alpha_2 $ = 1.5
Figure 3.  $ \alpha_1<1 $ and $ \alpha_2>1 $: $ \mu_2 $ changes when $ \alpha_1 $ = 0.25 and $ \alpha_2 $ = 1.75
Figure 4.  $ \alpha_1>1 $ and $ \alpha_2<1 $: Fix $ \lambda $ = 1, $ \mu_1 $ = 1 and $ \mu_2 $ = 10
Figure 5.  $ \alpha_1>1 $ and $ \alpha_2<1 $: Fix $ \lambda $ = 1, $ \mu_1 $ = 10 and $ \mu_2 $ = 1
Figure 6.  $ \alpha_1>1 $ and $ \alpha_2<1 $: $ \mu_2 $ changes when $ \alpha_1 $ = 1.5 and $ \alpha_2 $ = 0.5
Table 1.  Data processed for sample trajectories when $ \alpha_1<1 $ and $ \alpha_2>1 $
$ \lambda $ $ \mu_1 $ $ \mu_2 $ $ \alpha_1 $ $ \alpha_2 $ t $ X^\alpha_t $
10 1 100 0.5 1.5 0.08203 -63.86
1 0.25 100 0.75 1.25 0.1855 -303.2
1 100 1 0.75 1.75 0.1035 122.5
1 100 0.25 0.75 1.5 0.207 -896.1
10 100 0.25 0.5 1.25 0.3301 252.1
100 100 1 0.25 1.75 0.1934 -3028000
10 1 0.25 0.25 1.25 0.5762 533.7
$ \lambda $ $ \mu_1 $ $ \mu_2 $ $ \alpha_1 $ $ \alpha_2 $ t $ X^\alpha_t $
10 1 100 0.5 1.5 0.08203 -63.86
1 0.25 100 0.75 1.25 0.1855 -303.2
1 100 1 0.75 1.75 0.1035 122.5
1 100 0.25 0.75 1.5 0.207 -896.1
10 100 0.25 0.5 1.25 0.3301 252.1
100 100 1 0.25 1.75 0.1934 -3028000
10 1 0.25 0.25 1.25 0.5762 533.7
Table 2.  Data processed for sample trajectories when $ \alpha_1>1 $ and $ \alpha_2<1 $
$ \lambda $ $ \mu_1 $ $ \mu_2 $ $ \alpha_1 $ $ \alpha_2 $ t $ X^\alpha_t $
10 0.25 1 1.5 0.5 0.1973 -91.87
10 1 100 1.5 0.25 0.01953 95.72
1 100 1 1.25 0.5 0.04492 305.9
100 1 0.25 1.5 0.25 0.1211 346
1 1 100 1.75 0.5 0.09766 311.1
100 1 100 1.5 0.5 0.05273 -242.9
10 1 0.25 1.75 0.75 0.5742 -105.1
$ \lambda $ $ \mu_1 $ $ \mu_2 $ $ \alpha_1 $ $ \alpha_2 $ t $ X^\alpha_t $
10 0.25 1 1.5 0.5 0.1973 -91.87
10 1 100 1.5 0.25 0.01953 95.72
1 100 1 1.25 0.5 0.04492 305.9
100 1 0.25 1.5 0.25 0.1211 346
1 1 100 1.75 0.5 0.09766 311.1
100 1 100 1.5 0.5 0.05273 -242.9
10 1 0.25 1.75 0.75 0.5742 -105.1
[1]

Shihu Li, Wei Liu, Yingchao Xie. Large deviations for stochastic 3D Leray-$ \alpha $ model with fractional dissipation. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2491-2509. doi: 10.3934/cpaa.2019113

[2]

Wensheng Yin, Jinde Cao, Guoqiang Zheng. Further results on stabilization of stochastic differential equations with delayed feedback control under $ G $-expectation framework. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021072

[3]

Khalid Latrach, Hssaine Oummi, Ahmed Zeghal. Existence results for nonlinear mono-energetic singular transport equations: $ L^p $-spaces. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021028

[4]

Anhui Gu. Weak pullback mean random attractors for non-autonomous $ p $-Laplacian equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3863-3878. doi: 10.3934/dcdsb.2020266

[5]

Jong Yoon Hyun, Yoonjin Lee, Yansheng Wu. Connection of $ p $-ary $ t $-weight linear codes to Ramanujan Cayley graphs with $ t+1 $ eigenvalues. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2020133

[6]

Jennifer D. Key, Bernardo G. Rodrigues. Binary codes from $ m $-ary $ n $-cubes $ Q^m_n $. Advances in Mathematics of Communications, 2021, 15 (3) : 507-524. doi: 10.3934/amc.2020079

[7]

Jiangang Qi, Bing Xie. Extremum estimates of the $ L^1 $-norm of weights for eigenvalue problems of vibrating string equations based on critical equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3505-3516. doi: 10.3934/dcdsb.2020243

[8]

Chaoqian Li, Yajun Liu, Yaotang Li. Note on $ Z $-eigenvalue inclusion theorems for tensors. Journal of Industrial & Management Optimization, 2021, 17 (2) : 687-693. doi: 10.3934/jimo.2019129

[9]

Lin Yang, Yejuan Wang, Tomás Caraballo. Regularity of global attractors and exponential attractors for $ 2 $D quasi-geostrophic equations with fractional dissipation. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021093

[10]

Beom-Seok Han, Kyeong-Hun Kim, Daehan Park. A weighted Sobolev space theory for the diffusion-wave equations with time-fractional derivatives on $ C^{1} $ domains. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3415-3445. doi: 10.3934/dcds.2021002

[11]

Dean Crnković, Nina Mostarac, Bernardo G. Rodrigues, Leo Storme. $ s $-PD-sets for codes from projective planes $ \mathrm{PG}(2,2^h) $, $ 5 \leq h\leq 9 $. Advances in Mathematics of Communications, 2021, 15 (3) : 423-440. doi: 10.3934/amc.2020075

[12]

Lei Liu, Li Wu. Multiplicity of closed characteristics on $ P $-symmetric compact convex hypersurfaces in $ \mathbb{R}^{2n} $. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2635-3652. doi: 10.3934/dcds.2020378

[13]

Emma D'Aniello, Saber Elaydi. The structure of $ \omega $-limit sets of asymptotically non-autonomous discrete dynamical systems. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 903-915. doi: 10.3934/dcdsb.2019195

[14]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1631-1648. doi: 10.3934/dcdss.2020447

[15]

Raj Kumar, Maheshanand Bhaintwal. Duadic codes over $ \mathbb{Z}_4+u\mathbb{Z}_4 $. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2020135

[16]

Brian Ryals, Robert J. Sacker. Bifurcation in the almost periodic $ 2 $D Ricker map. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021089

[17]

Alfonso Castro, Jorge Cossio, Sigifredo Herrón, Carlos Vélez. Infinitely many radial solutions for a $ p $-Laplacian problem with indefinite weight. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021058

[18]

Zhaoxia Wang, Hebai Chen. A nonsmooth van der Pol-Duffing oscillator (I): The sum of indices of equilibria is $ -1 $. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021096

[19]

Yishui Wang, Dongmei Zhang, Peng Zhang, Yong Zhang. Local search algorithm for the squared metric $ k $-facility location problem with linear penalties. Journal of Industrial & Management Optimization, 2021, 17 (4) : 2013-2030. doi: 10.3934/jimo.2020056

[20]

Zhaoxia Wang, Hebai Chen. A nonsmooth van der Pol-Duffing oscillator (II): The sum of indices of equilibria is $ 1 $. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021101

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (75)
  • HTML views (61)
  • Cited by (0)

Other articles
by authors

[Back to Top]