-
Previous Article
On the Cahn-Hilliard equation with mass source for biological applications
- CPAA Home
- This Issue
- Next Article
Response solutions to harmonic oscillators beyond multi–dimensional Brjuno frequency
1. | School of Mathematical Sciences, Tiangong University, Tianjin 300387, China |
2. | School of Mathematics, Shandong University, Jinan 250100, China |
$ \begin{equation*} \ddot{x}+\lambda^{2}x = \epsilon f(\omega t,x), \end{equation*} $ |
$ \lambda \in \mathcal{O} $ |
$ f $ |
$ \omega \in \mathbb{R}^d \, (d \geq 2) $ |
$ \omega\in\mathbb{R}^{d}, $ |
References:
[1] |
A. Avila, B. Fayad and R. Krikorian,
A KAM scheme for $\mathrm{SL}(2, \mathbb{R})$ cocycles with Liouvillean frequencies, Geom. Funct. Anal., 21 (2011), 1001-1019.
doi: 10.1007/s00039-011-0135-6. |
[2] |
A. Avila, J. You and Q. Zhou,
Sharp phase transitions for the almost Mathieu operator, Duke Math. J., 166 (2017), 2697-2718.
doi: 10.1215/00127094-2017-0013. |
[3] |
M. Berti,
KAM theory for partial differential equations, Anal. Theory Appl., 35 (2019), 235-267.
doi: 10.4208/ata.oa-0013. |
[4] |
B. L. J. Braaksma and H. W. Broer,
On a quasiperiodic Hopf bifurcation, Ann. Inst. Henri Poincare Anal. Non Lineaire, 4 (1987), 115-168.
|
[5] |
H. Cheng, W. Si and J. Si,
Whiskered tori for forced beam equations with multi-dimensional liouvillean frequency, J. Dyn. Differ. Equ., 32 (2020), 705-739.
doi: 10.1007/s10884-019-09754-1. |
[6] |
Y. Cheung,
Hausdorff dimension of the set of singular pairs, Ann. Math., 173 (2011), 127-167.
doi: 10.4007/annals.2011.173.1.4. |
[7] |
L. H. Eliasson,
Perturbations of stable invariant tori for Hamiltonian systems, Ann. Scuola Norm. Super. Pisa-Cl. Sci., 15 (1988), 115-147.
|
[8] |
L. H. Eliasson, B. Grébert and S. B. Kuksin,
KAM for the nonlinear beam equation, Geom. Funct. Anal., 26 (2016), 1588-1715.
doi: 10.1007/s00039-016-0390-7. |
[9] |
L. H. Eliasson and S. B. Kuksin,
KAM for the nonlinear Schrödinger equation, Ann. Math., 172 (2010), 371-435.
doi: 10.4007/annals.2010.172.371. |
[10] |
M. Friedman,
Quasi-periodic solutions of nonlinear ordinary differential equations with small damping, Bull. Amer. Math. Soc., 73 (1967), 460-464.
doi: 10.1090/S0002-9904-1967-11783-X. |
[11] |
J. Geng and X. Ren,
Lower dimensional invariant tori with prescribed frequency for nonlinear wave equation, J. Differ. Equ., 249 (2010), 2796-2821.
doi: 10.1016/j.jde.2010.04.003. |
[12] |
J. Geng, X. Xu and J. You,
An infinite dimensional KAM theorem and its application to the two dimensional cubic Schrödinger equation, Adv. Math., 226 (2011), 5361-5402.
doi: 10.1016/j.aim.2011.01.013. |
[13] |
J. Geng and J. You,
A KAM theorem for Hamiltonian partial differential equations in higher dimensional spaces, Commun. Math. Phys., 262 (2006), 343-372.
doi: 10.1007/s00220-005-1497-0. |
[14] |
Y. Han, Y. Li and Y. Yi,
Degenerate lower-dimensional tori in Hamiltonian systems, J. Differ. Equ., 227 (2006), 670-691.
doi: 10.1016/j.jde.2006.02.006. |
[15] |
X. Hou and J. You,
Almost reducibility and non-perturbative reducibility of quasi-periodic linear systems, Invent. Math., 190 (2012), 209-260.
doi: 10.1007/s00222-012-0379-2. |
[16] |
T. Kappeler and J. Pöschel, KdV & KAM, Springer-Verlag, Berlin, 2003.
doi: 10.1007/978-3-662-08054-2. |
[17] |
R. Krikorian, J. Wang, J. You and Q. Zhou,
Linearization of quasiperiodically forced circle flows beyond brjuno condition, Commun. Math. Phys., 358 (2018), 81-100.
doi: 10.1007/s00220-017-3021-8. |
[18] |
S. B. Kuksin,
A KAM-theorem for equations of the Korteweg-de Vries type, Rev. Math. Math. Phys., 10 (1998), 1-64.
|
[19] |
S. B. Kuksin, Analysis of Hamiltonian PDEs, Oxford University Press, Oxford, 2000.
![]() |
[20] |
S. Kuksin and J. Pöschel,
Invariant Cantor manifolds of quasi-periodic oscillations for a nonlinear Schrödinger equation, Ann. Math., 143 (1996), 149-179.
doi: 10.2307/2118656. |
[21] |
Y. Li and Y. Yi,
Persistence of lower dimensional tori of general types in Hamiltonian systems, T. Am. Math. Soc., 357 (2005), 1565-1600.
doi: 10.1090/S0002-9947-04-03564-0. |
[22] |
J. Liu and X. Yuan,
Spectrum for quantum Duffing oscillator and small-divisor equation with large-variable coefficient, Commun. Pure Appl. Math., 63 (2010), 1145-1172.
doi: 10.1002/cpa.20314. |
[23] |
J. Liu and X. Yuan,
A KAM theorem for Hamiltonian partial differential equations with unbounded perturbations, Commun. Math. Phys., 307 (2011), 629-673.
doi: 10.1007/s00220-011-1353-3. |
[24] |
Z. Lou and J. Geng,
Quasi-periodic response solutions in forced reversible systems with liouvillean frequencies, J. Differ. Equ., 263 (2017), 3894-3927.
doi: 10.1016/j.jde.2017.05.007. |
[25] |
J. Moser,
Combination tones for Duffing's equation, Commun. Pure Appl. Math., 18 (1965), 167-181.
doi: 10.1002/cpa.3160180116. |
[26] |
J. Pöschel,
On elliptic lower-dimensional tori in Hamiltonian systems, Math. Z., 202 (1989), 559-608.
doi: 10.1007/BF01221590. |
[27] |
W. Si and J. Si,
Response solutions and quasi-periodic degenerate bifurcations for quasi-periodically forced systems, Nonlinearity, 31 (2018), 2361-2418.
doi: 10.1088/1361-6544/aaa7b9. |
[28] |
J. J. Stoker, Nonlinear Vibrations in Mechanical and Electrical Systems, Interscience Publishers, Inc., New York, N.Y., 1950. |
[29] |
J. Wang and J. You,
Boundedness of solutions for non-linear quasi-periodic differential equations with Liouvillean frequency, J. Differ. Equ., 261 (2016), 1068-1098.
doi: 10.1016/j.jde.2016.03.038. |
[30] |
J. Wang, J. You and Q. Zhou,
Response solutions for quasi-periodically forced harmonic oscillators, T. Am. Math. Soc., 369 (2017), 4251-4274.
doi: 10.1090/tran/6800. |
[31] |
J. Xu, J. You and Q. Qiu,
Invariant tori for nearly integrable Hamiltonian systems with degeneracy, Math. Z., 226 (1997), 375-387.
doi: 10.1007/PL00004344. |
[32] |
X. Xu, J. You and Q. Zhou, Quasi-periodic solutions of NLS with Liouvillean frequency, preprint, arXiv: 1707.04048. Google Scholar |
[33] |
J. You and Q. Zhou,
Phase transition and semi-global reducibility, Commun. Math. Phys., 330 (2014), 1095-1113.
doi: 10.1007/s00220-014-2012-2. |
[34] |
D. Zhang, J. Xu and X. Xu,
Reducibility of three dimensional skew symmetric system with Liouvillean basic frequencies, Discrete Contin. Dyn. Syst., 38 (2018), 2851-2877.
doi: 10.3934/dcds.2018123. |
[35] |
Q. Zhou and J. Wang,
Reducibility results for quasiperiodic cocycles with liouvillean frequency, J. Dyn. Differ. Equ., 24 (2012), 61-83.
doi: 10.1007/s10884-011-9235-0. |
show all references
References:
[1] |
A. Avila, B. Fayad and R. Krikorian,
A KAM scheme for $\mathrm{SL}(2, \mathbb{R})$ cocycles with Liouvillean frequencies, Geom. Funct. Anal., 21 (2011), 1001-1019.
doi: 10.1007/s00039-011-0135-6. |
[2] |
A. Avila, J. You and Q. Zhou,
Sharp phase transitions for the almost Mathieu operator, Duke Math. J., 166 (2017), 2697-2718.
doi: 10.1215/00127094-2017-0013. |
[3] |
M. Berti,
KAM theory for partial differential equations, Anal. Theory Appl., 35 (2019), 235-267.
doi: 10.4208/ata.oa-0013. |
[4] |
B. L. J. Braaksma and H. W. Broer,
On a quasiperiodic Hopf bifurcation, Ann. Inst. Henri Poincare Anal. Non Lineaire, 4 (1987), 115-168.
|
[5] |
H. Cheng, W. Si and J. Si,
Whiskered tori for forced beam equations with multi-dimensional liouvillean frequency, J. Dyn. Differ. Equ., 32 (2020), 705-739.
doi: 10.1007/s10884-019-09754-1. |
[6] |
Y. Cheung,
Hausdorff dimension of the set of singular pairs, Ann. Math., 173 (2011), 127-167.
doi: 10.4007/annals.2011.173.1.4. |
[7] |
L. H. Eliasson,
Perturbations of stable invariant tori for Hamiltonian systems, Ann. Scuola Norm. Super. Pisa-Cl. Sci., 15 (1988), 115-147.
|
[8] |
L. H. Eliasson, B. Grébert and S. B. Kuksin,
KAM for the nonlinear beam equation, Geom. Funct. Anal., 26 (2016), 1588-1715.
doi: 10.1007/s00039-016-0390-7. |
[9] |
L. H. Eliasson and S. B. Kuksin,
KAM for the nonlinear Schrödinger equation, Ann. Math., 172 (2010), 371-435.
doi: 10.4007/annals.2010.172.371. |
[10] |
M. Friedman,
Quasi-periodic solutions of nonlinear ordinary differential equations with small damping, Bull. Amer. Math. Soc., 73 (1967), 460-464.
doi: 10.1090/S0002-9904-1967-11783-X. |
[11] |
J. Geng and X. Ren,
Lower dimensional invariant tori with prescribed frequency for nonlinear wave equation, J. Differ. Equ., 249 (2010), 2796-2821.
doi: 10.1016/j.jde.2010.04.003. |
[12] |
J. Geng, X. Xu and J. You,
An infinite dimensional KAM theorem and its application to the two dimensional cubic Schrödinger equation, Adv. Math., 226 (2011), 5361-5402.
doi: 10.1016/j.aim.2011.01.013. |
[13] |
J. Geng and J. You,
A KAM theorem for Hamiltonian partial differential equations in higher dimensional spaces, Commun. Math. Phys., 262 (2006), 343-372.
doi: 10.1007/s00220-005-1497-0. |
[14] |
Y. Han, Y. Li and Y. Yi,
Degenerate lower-dimensional tori in Hamiltonian systems, J. Differ. Equ., 227 (2006), 670-691.
doi: 10.1016/j.jde.2006.02.006. |
[15] |
X. Hou and J. You,
Almost reducibility and non-perturbative reducibility of quasi-periodic linear systems, Invent. Math., 190 (2012), 209-260.
doi: 10.1007/s00222-012-0379-2. |
[16] |
T. Kappeler and J. Pöschel, KdV & KAM, Springer-Verlag, Berlin, 2003.
doi: 10.1007/978-3-662-08054-2. |
[17] |
R. Krikorian, J. Wang, J. You and Q. Zhou,
Linearization of quasiperiodically forced circle flows beyond brjuno condition, Commun. Math. Phys., 358 (2018), 81-100.
doi: 10.1007/s00220-017-3021-8. |
[18] |
S. B. Kuksin,
A KAM-theorem for equations of the Korteweg-de Vries type, Rev. Math. Math. Phys., 10 (1998), 1-64.
|
[19] |
S. B. Kuksin, Analysis of Hamiltonian PDEs, Oxford University Press, Oxford, 2000.
![]() |
[20] |
S. Kuksin and J. Pöschel,
Invariant Cantor manifolds of quasi-periodic oscillations for a nonlinear Schrödinger equation, Ann. Math., 143 (1996), 149-179.
doi: 10.2307/2118656. |
[21] |
Y. Li and Y. Yi,
Persistence of lower dimensional tori of general types in Hamiltonian systems, T. Am. Math. Soc., 357 (2005), 1565-1600.
doi: 10.1090/S0002-9947-04-03564-0. |
[22] |
J. Liu and X. Yuan,
Spectrum for quantum Duffing oscillator and small-divisor equation with large-variable coefficient, Commun. Pure Appl. Math., 63 (2010), 1145-1172.
doi: 10.1002/cpa.20314. |
[23] |
J. Liu and X. Yuan,
A KAM theorem for Hamiltonian partial differential equations with unbounded perturbations, Commun. Math. Phys., 307 (2011), 629-673.
doi: 10.1007/s00220-011-1353-3. |
[24] |
Z. Lou and J. Geng,
Quasi-periodic response solutions in forced reversible systems with liouvillean frequencies, J. Differ. Equ., 263 (2017), 3894-3927.
doi: 10.1016/j.jde.2017.05.007. |
[25] |
J. Moser,
Combination tones for Duffing's equation, Commun. Pure Appl. Math., 18 (1965), 167-181.
doi: 10.1002/cpa.3160180116. |
[26] |
J. Pöschel,
On elliptic lower-dimensional tori in Hamiltonian systems, Math. Z., 202 (1989), 559-608.
doi: 10.1007/BF01221590. |
[27] |
W. Si and J. Si,
Response solutions and quasi-periodic degenerate bifurcations for quasi-periodically forced systems, Nonlinearity, 31 (2018), 2361-2418.
doi: 10.1088/1361-6544/aaa7b9. |
[28] |
J. J. Stoker, Nonlinear Vibrations in Mechanical and Electrical Systems, Interscience Publishers, Inc., New York, N.Y., 1950. |
[29] |
J. Wang and J. You,
Boundedness of solutions for non-linear quasi-periodic differential equations with Liouvillean frequency, J. Differ. Equ., 261 (2016), 1068-1098.
doi: 10.1016/j.jde.2016.03.038. |
[30] |
J. Wang, J. You and Q. Zhou,
Response solutions for quasi-periodically forced harmonic oscillators, T. Am. Math. Soc., 369 (2017), 4251-4274.
doi: 10.1090/tran/6800. |
[31] |
J. Xu, J. You and Q. Qiu,
Invariant tori for nearly integrable Hamiltonian systems with degeneracy, Math. Z., 226 (1997), 375-387.
doi: 10.1007/PL00004344. |
[32] |
X. Xu, J. You and Q. Zhou, Quasi-periodic solutions of NLS with Liouvillean frequency, preprint, arXiv: 1707.04048. Google Scholar |
[33] |
J. You and Q. Zhou,
Phase transition and semi-global reducibility, Commun. Math. Phys., 330 (2014), 1095-1113.
doi: 10.1007/s00220-014-2012-2. |
[34] |
D. Zhang, J. Xu and X. Xu,
Reducibility of three dimensional skew symmetric system with Liouvillean basic frequencies, Discrete Contin. Dyn. Syst., 38 (2018), 2851-2877.
doi: 10.3934/dcds.2018123. |
[35] |
Q. Zhou and J. Wang,
Reducibility results for quasiperiodic cocycles with liouvillean frequency, J. Dyn. Differ. Equ., 24 (2012), 61-83.
doi: 10.1007/s10884-011-9235-0. |
[1] |
Yanling Shi, Junxiang Xu. Quasi-periodic solutions for nonlinear wave equation with Liouvillean frequency. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3479-3490. doi: 10.3934/dcdsb.2020241 |
[2] |
Wen Si. Response solutions for degenerate reversible harmonic oscillators. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3951-3972. doi: 10.3934/dcds.2021023 |
[3] |
Xiaoming Wang. Quasi-periodic solutions for a class of second order differential equations with a nonlinear damping term. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 543-556. doi: 10.3934/dcdss.2017027 |
[4] |
Yingte Sun. Floquet solutions for the Schrödinger equation with fast-oscillating quasi-periodic potentials. Discrete & Continuous Dynamical Systems, 2021 doi: 10.3934/dcds.2021047 |
[5] |
Jia Li, Junxiang Xu. On the reducibility of a class of almost periodic Hamiltonian systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3905-3919. doi: 10.3934/dcdsb.2020268 |
[6] |
Christos Sourdis. A Liouville theorem for ancient solutions to a semilinear heat equation and its elliptic counterpart. Electronic Research Archive, , () : -. doi: 10.3934/era.2021016 |
[7] |
Wenmeng Geng, Kai Tao. Lyapunov exponents of discrete quasi-periodic gevrey Schrödinger equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2977-2996. doi: 10.3934/dcdsb.2020216 |
[8] |
Giovanni Cimatti. Forced periodic solutions for piezoelectric crystals. Communications on Pure & Applied Analysis, 2005, 4 (2) : 475-485. doi: 10.3934/cpaa.2005.4.475 |
[9] |
Tian Hou, Yi Wang, Xizhuang Xie. Instability and bifurcation of a cooperative system with periodic coefficients. Electronic Research Archive, , () : -. doi: 10.3934/era.2021026 |
[10] |
Bochao Chen, Yixian Gao. Quasi-periodic travelling waves for beam equations with damping on 3-dimensional rectangular tori. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021075 |
[11] |
Jaume Llibre, Luci Any Roberto. On the periodic solutions of a class of Duffing differential equations. Discrete & Continuous Dynamical Systems, 2013, 33 (1) : 277-282. doi: 10.3934/dcds.2013.33.277 |
[12] |
Misha Bialy, Andrey E. Mironov. Rich quasi-linear system for integrable geodesic flows on 2-torus. Discrete & Continuous Dynamical Systems, 2011, 29 (1) : 81-90. doi: 10.3934/dcds.2011.29.81 |
[13] |
Jing Li, Gui-Quan Sun, Zhen Jin. Interactions of time delay and spatial diffusion induce the periodic oscillation of the vegetation system. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021127 |
[14] |
Jianping Gao, Shangjiang Guo, Wenxian Shen. Persistence and time periodic positive solutions of doubly nonlocal Fisher-KPP equations in time periodic and space heterogeneous media. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2645-2676. doi: 10.3934/dcdsb.2020199 |
[15] |
Peng Luo. Comparison theorem for diagonally quadratic BSDEs. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2543-2557. doi: 10.3934/dcds.2020374 |
[16] |
Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189 |
[17] |
Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399 |
[18] |
Pengyu Chen. Periodic solutions to non-autonomous evolution equations with multi-delays. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2921-2939. doi: 10.3934/dcdsb.2020211 |
[19] |
Shuang Wang, Dingbian Qian. Periodic solutions of p-Laplacian equations via rotation numbers. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021060 |
[20] |
Zaihong Wang, Jin Li, Tiantian Ma. An erratum note on the paper: Positive periodic solution for Brillouin electron beam focusing system. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1995-1997. doi: 10.3934/dcdsb.2013.18.1995 |
2019 Impact Factor: 1.105
Tools
Metrics
Other articles
by authors
[Back to Top]