Using variational methods we study the stability and strong instability of ground states for the focusing inhomogeneous nonlinear Schrödinger equation (INLS)
$ \begin{equation*} i\partial_{t}u+\Delta u+|x|^{-b}|u|^{p-1}u = 0. \end{equation*} $
We construct two kinds of invariant sets under the evolution flow of (INLS). Then we show that the solution of (INLS) is global and bounded in $ H^{1}(\mathbb{R^{N}}) $ in the first kind of the invariant sets, while the solution blow-up in finite time in the other invariant set. Consequently, we prove that if the nonlinearity is $ L^{2} $-supercritical, then the ground states are strongly unstable by blow-up.
Citation: |
[1] |
G. P. Agrawal, Nonlinear Fiber Optics, Academic Press, 2007.
![]() |
[2] |
A. H. Ardila and V. D. Dinh, Some qualitative studies of the focusing inhomogeneous Gross-Pitaevskii equation, Z. Angew. Math. Phys., 71 (2020), 24pp.
doi: 10.1007/s00033-020-01301-z.![]() ![]() ![]() |
[3] |
T. Cazenave, Semilinear Schrödinger Equations, American Mathematical Society, Courant Institute of Mathematical Sciences, 2003.
doi: 10.1090/cln/010.![]() ![]() ![]() |
[4] |
J. Chen, On a class of nonlinear inhomogeneous Schrödinger equations, J. Appl. Math. Comput., 32 (2010), 237-253.
doi: 10.1007/s12190-009-0246-5.![]() ![]() ![]() |
[5] |
J. Chen and B. Guo, Sharp global existence and blowing up results for inhomogeneous Schrödinger equations, Discrete Contin. Dyn. Syst. Ser. B, 8 (2007), 357-367.
doi: 10.3934/dcdsb.2007.8.357.![]() ![]() ![]() |
[6] |
V. Combet and F. Genoud, Classification of minimal mass blow-up solutions for an ${L}^{2}$ critical inhomogeneous NLS, J. Evol. Equ., 16 (2016), 483-500.
doi: 10.1007/s00028-015-0309-z.![]() ![]() ![]() |
[7] |
D. Du, Y. Wu and K. Zhang, On blow-up criterion for the nonlinear Schrödinger equation, Discrete Contin.Dynl. Sys, 36 (2016), 3639-3650.
doi: 10.3934/dcds.2016.36.3639.![]() ![]() ![]() |
[8] |
A. de Bouard and R. Fukuizumi, Stability of standing waves for nonlinear Schrödinger equations with inhomogeneous nonlinearities, Ann. Henri Poincaré, 6 (2015), 1157-1177.
doi: 10.1007/s00023-005-0236-6.![]() ![]() ![]() |
[9] |
L. G. Farah, Global well-posedness and blow-up on the energy space for the inhomogeneous nonlinear Schrödinger equation, J. Evol. Equ., 16 (2016), 193-208.
doi: 10.1007/s00028-015-0298-y.![]() ![]() ![]() |
[10] |
G. Fibich and X. P. Wang, Equations with inhomogeneous nonlinearities, Physica D, 175 (2003), 96-108.
doi: 10.1016/S0167-2789(02)00626-7.![]() ![]() ![]() |
[11] |
R. Fukuizumi, Equations with critical power nonlinearity and potentials., Adv. Differ. Equ., 10 (2005), 259-276.
![]() ![]() |
[12] |
F. Genoud, Bifurcation and stability of travelling waves in self-focusing planar waveguides, Adv. Nonlinear Stu., 10 (2010), 357-400.
doi: 10.1515/ans-2010-0207.![]() ![]() ![]() |
[13] |
F. Genoud, An inhomogeneous, ${L}^2$-critical, nonlinear Schrödinger equation, Z. Anal. Anwend., 31 (2012), 283-290.
doi: 10.4171/ZAA/1460.![]() ![]() ![]() |
[14] |
F. Genoud and C. Stuart, Schrödinger equations with a spatially decaying nonlinearity: existence and stability of standing waves, Discrete Contin. Dyn. Syst., 21 (2008), 137-186.
doi: 10.3934/dcds.2008.21.137.![]() ![]() ![]() |
[15] |
T. Saanouni, Remarks on the inhomogeneous fractional nonlinear Schrödinger equation, J. Math Phys., 57 (2016) 081503.
doi: 10.1063/1.4960045.![]() ![]() ![]() |
[16] |
J. Toland, Uniqueness of positive solutions of some semilinear Sturm-Liouville problemson the half line, Proc. Roy. Soc. Edinburgh Sect. A, 97 (1984), 259-263.
doi: 10.1017/S0308210500032042.![]() ![]() ![]() |
[17] |
E. Yanagida, Uniqueness of positive radial solutions of $\delta u+g(r)u+h(r)u^{p}=0$ in $\mathbb{R}^{N}$, Arch. Rat. Mech. Anal, 115 (1991), 257-274.
doi: 10.1007/BF00380770.![]() ![]() ![]() |
[18] |
S. Zhu, Blow-up solutions for the inhomogeneous Schrödinger equation with ${L}^{2}$ supercritical nonlinearity, J. Math. Anal. Appl., 409 (2014), 760-776.
doi: 10.1016/j.jmaa.2013.07.029.![]() ![]() ![]() |