doi: 10.3934/cpaa.2020272

Multiple solutions for nonlinear cone degenerate elliptic equations

1. 

School of Mathematics and Statistics, Wuhan University, Wuhan 430072, China

2. 

School of Mathematical Sciences and LPMC, Nankai University, Tianjin, 300071, China

* Corresponding author

Dedicated to the 80th birthday of Professor Shuxing Chen

Received  May 2020 Revised  September 2020 Published  November 2020

Fund Project: This work is supported by the NSFC under the grands 11771218, 11371282, 11631011 and supported by the Fundamental Research Funds for the Central Universities

The present paper is concerned with the Dirichlet boundary value problem for nonlinear cone degenerate elliptic equations. First we introduce the weighted Sobolev spaces, inequalities and the property of compactness. After the appropriate energy functional established, we obtain the existence of infinitely many solutions in the weighted Sobolev spaces by applying the variational methods.

Citation: Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, doi: 10.3934/cpaa.2020272
References:
[1]

R. P. AgarwalM. B. Ghaemi and S. Saiedinezhad, The Nehari manifold for the degenerate p-Laplacian quasilinear elliptic equations, Adv. Math. Sci. Appl., 20 (2010), 37-50.   Google Scholar

[2]

A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Func. Anal., 14 (1973), 349-381.  doi: 10.1016/0022-1236(73)90051-7.  Google Scholar

[3]

D. CaoS. Peng and S. Yan, Infinitely many solutions for p-Laplacian equation involving critical Sobolev growth, J. Func. Anal., 262 (2012), 2861-2902.  doi: 10.1016/j.jfa.2012.01.006.  Google Scholar

[4]

S. Carl and D. Motreanu, Multiple and sign-changing solutions for the multivalued p-Laplacian equation, Math. Nachr., 283 (2010), 965-981.  doi: 10.1002/mana.200710049.  Google Scholar

[5]

A. Cavalheiro, Existence results for Dirichlet problems with degenerated p-Laplacian and p-biharmonic operators, Opuscula Math., 33 (2013), 439-453. doi: 10.7494/OpMath.2013.33.3.439.  Google Scholar

[6]

A. Cavalheiro, Existence and Uniqueness of Solutions for Dirichlet Problems with Degenerate Nonlinear Elliptic Operators, Differ. Equ. Dyn. Syst., 24 (2016), 305-317. doi: 10.1007/s12591-014-0214-x.  Google Scholar

[7]

H. ChenX. Liu and Y. Wei, Existence Theorem for a class of Semi-linear totally Characteristic Elliptic Equations with Critical Cone Sobolev Exponents, Ann. Glob. Anal. Geom., 39 (2011), 27-43.  doi: 10.1007/s10455-010-9226-0.  Google Scholar

[8]

H. ChenX. Liu and Y. Wei, Cone Sobolev Inequality and Dirichlet problems for Nonlinear Elliptic Equations on Manifold with Conical Singularities, Calc. Var. PDEs, 43 (2012), 463-484.  doi: 10.1007/s00526-011-0418-7.  Google Scholar

[9]

H. ChenX. Liu and Y. Wei, Multiple Solutions for Semilinear totally Characteristic Elliptic Equations with Subcritical or Critical Cone Sobolev Exponents, J. Differ. Equ., 252 (2012), 4200-4228.  doi: 10.1016/j.jde.2011.12.009.  Google Scholar

[10]

H. ChenY. Wei and B. Zhou, Existence of Solutions for Degenerate Elliptic Equations with Singular Potential on Conical Singular Manifolds, Math. Nachr., 285 (2012), 1370-1384.  doi: 10.1002/mana.201100088.  Google Scholar

[11]

S. CoriascoE. Schrohe and J. Seiler, Realizations of differential operators on conic manifolds with boundary, Ann. Glob. Anal. Geom., 31 (2007), 223-285.  doi: 10.1007/s10455-006-9019-7.  Google Scholar

[12]

P. Drabek, Resonance Problems for the p -Laplacian, J Funct. Anal., 169 (1999), 189-200.  doi: 10.1006/jfan.1999.3501.  Google Scholar

[13]

Ju. V. Egorov and B. W. Schulze, Pseudo-differential operators, singularities, applications, Operator Theory, Advances and Applications 93, Birkhäuser Verlag, Basel, 1997. doi: 10.1007/978-3-0348-8900-1.  Google Scholar

[14] D. A. Frank-Kamenetskii, Diffusion and Heat Transfer in Chemical Kinetics, Plenum Press, 1969.   Google Scholar
[15]

J. Garcia Azorero and I. Peral Alonso, Existence and nonuniqueness for the $p$-Laplacian: Nonlinear Eigenvalues, Commun. in PDE, 12 (1987), 1389-1430.  doi: 10.1080/03605308708820534.  Google Scholar

[16]

Y. Jing and Z. Liu, Infinitely many solutions of p-sublinear p-Laplacian equations, J. Math. Anal. Appl., 429 (2015), 1240-1257.  doi: 10.1016/j.jmaa.2015.04.069.  Google Scholar

[17]

R. B. Melrose and G. A. Mendoza, Elliptic operators of totally characteristic type, Math. Sci. Res., (1983), 29 pp. Google Scholar

[18]

P. H. Rabinowitz, Some Aspects of Nonlinear Eigenvalue Problems, Rocky Mt. J. Math., 2 (1973), 161-192.  doi: 10.1216/RMJ-1973-3-2-161.  Google Scholar

[19]

E. Schrohe and J. Seiler, Ellipticity and invertibility in the cone algebra on $L_p$-Sobolev spaces, Integr. Equat. Oper. Th., (2001), 93–114. doi: 10.1007/BF01202533.  Google Scholar

[20]

B. W. Schulze, Boundary value problems and singular pseudo-differential operators, Pure Appl. Math., (1999).  Google Scholar

[21]

H. Yamabe, On the deformations of Riemannian structures on compact manifolds, Osaka Math. J., (1960), 21–37.  Google Scholar

show all references

References:
[1]

R. P. AgarwalM. B. Ghaemi and S. Saiedinezhad, The Nehari manifold for the degenerate p-Laplacian quasilinear elliptic equations, Adv. Math. Sci. Appl., 20 (2010), 37-50.   Google Scholar

[2]

A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Func. Anal., 14 (1973), 349-381.  doi: 10.1016/0022-1236(73)90051-7.  Google Scholar

[3]

D. CaoS. Peng and S. Yan, Infinitely many solutions for p-Laplacian equation involving critical Sobolev growth, J. Func. Anal., 262 (2012), 2861-2902.  doi: 10.1016/j.jfa.2012.01.006.  Google Scholar

[4]

S. Carl and D. Motreanu, Multiple and sign-changing solutions for the multivalued p-Laplacian equation, Math. Nachr., 283 (2010), 965-981.  doi: 10.1002/mana.200710049.  Google Scholar

[5]

A. Cavalheiro, Existence results for Dirichlet problems with degenerated p-Laplacian and p-biharmonic operators, Opuscula Math., 33 (2013), 439-453. doi: 10.7494/OpMath.2013.33.3.439.  Google Scholar

[6]

A. Cavalheiro, Existence and Uniqueness of Solutions for Dirichlet Problems with Degenerate Nonlinear Elliptic Operators, Differ. Equ. Dyn. Syst., 24 (2016), 305-317. doi: 10.1007/s12591-014-0214-x.  Google Scholar

[7]

H. ChenX. Liu and Y. Wei, Existence Theorem for a class of Semi-linear totally Characteristic Elliptic Equations with Critical Cone Sobolev Exponents, Ann. Glob. Anal. Geom., 39 (2011), 27-43.  doi: 10.1007/s10455-010-9226-0.  Google Scholar

[8]

H. ChenX. Liu and Y. Wei, Cone Sobolev Inequality and Dirichlet problems for Nonlinear Elliptic Equations on Manifold with Conical Singularities, Calc. Var. PDEs, 43 (2012), 463-484.  doi: 10.1007/s00526-011-0418-7.  Google Scholar

[9]

H. ChenX. Liu and Y. Wei, Multiple Solutions for Semilinear totally Characteristic Elliptic Equations with Subcritical or Critical Cone Sobolev Exponents, J. Differ. Equ., 252 (2012), 4200-4228.  doi: 10.1016/j.jde.2011.12.009.  Google Scholar

[10]

H. ChenY. Wei and B. Zhou, Existence of Solutions for Degenerate Elliptic Equations with Singular Potential on Conical Singular Manifolds, Math. Nachr., 285 (2012), 1370-1384.  doi: 10.1002/mana.201100088.  Google Scholar

[11]

S. CoriascoE. Schrohe and J. Seiler, Realizations of differential operators on conic manifolds with boundary, Ann. Glob. Anal. Geom., 31 (2007), 223-285.  doi: 10.1007/s10455-006-9019-7.  Google Scholar

[12]

P. Drabek, Resonance Problems for the p -Laplacian, J Funct. Anal., 169 (1999), 189-200.  doi: 10.1006/jfan.1999.3501.  Google Scholar

[13]

Ju. V. Egorov and B. W. Schulze, Pseudo-differential operators, singularities, applications, Operator Theory, Advances and Applications 93, Birkhäuser Verlag, Basel, 1997. doi: 10.1007/978-3-0348-8900-1.  Google Scholar

[14] D. A. Frank-Kamenetskii, Diffusion and Heat Transfer in Chemical Kinetics, Plenum Press, 1969.   Google Scholar
[15]

J. Garcia Azorero and I. Peral Alonso, Existence and nonuniqueness for the $p$-Laplacian: Nonlinear Eigenvalues, Commun. in PDE, 12 (1987), 1389-1430.  doi: 10.1080/03605308708820534.  Google Scholar

[16]

Y. Jing and Z. Liu, Infinitely many solutions of p-sublinear p-Laplacian equations, J. Math. Anal. Appl., 429 (2015), 1240-1257.  doi: 10.1016/j.jmaa.2015.04.069.  Google Scholar

[17]

R. B. Melrose and G. A. Mendoza, Elliptic operators of totally characteristic type, Math. Sci. Res., (1983), 29 pp. Google Scholar

[18]

P. H. Rabinowitz, Some Aspects of Nonlinear Eigenvalue Problems, Rocky Mt. J. Math., 2 (1973), 161-192.  doi: 10.1216/RMJ-1973-3-2-161.  Google Scholar

[19]

E. Schrohe and J. Seiler, Ellipticity and invertibility in the cone algebra on $L_p$-Sobolev spaces, Integr. Equat. Oper. Th., (2001), 93–114. doi: 10.1007/BF01202533.  Google Scholar

[20]

B. W. Schulze, Boundary value problems and singular pseudo-differential operators, Pure Appl. Math., (1999).  Google Scholar

[21]

H. Yamabe, On the deformations of Riemannian structures on compact manifolds, Osaka Math. J., (1960), 21–37.  Google Scholar

[1]

Ademir Fernando Pazoto, Lionel Rosier. Uniform stabilization in weighted Sobolev spaces for the KdV equation posed on the half-line. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1511-1535. doi: 10.3934/dcdsb.2010.14.1511

[2]

John Villavert. On problems with weighted elliptic operator and general growth nonlinearities. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021023

[3]

Alexandre B. Simas, Fábio J. Valentim. $W$-Sobolev spaces: Higher order and regularity. Communications on Pure & Applied Analysis, 2015, 14 (2) : 597-607. doi: 10.3934/cpaa.2015.14.597

[4]

Xue-Ping Luo, Yi-Bin Xiao, Wei Li. Strict feasibility of variational inclusion problems in reflexive Banach spaces. Journal of Industrial & Management Optimization, 2020, 16 (5) : 2495-2502. doi: 10.3934/jimo.2019065

[5]

Beom-Seok Han, Kyeong-Hun Kim, Daehan Park. A weighted Sobolev space theory for the diffusion-wave equations with time-fractional derivatives on $ C^{1} $ domains. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3415-3445. doi: 10.3934/dcds.2021002

[6]

Fabio Sperotto Bemfica, Marcelo Mendes Disconzi, Casey Rodriguez, Yuanzhen Shao. Local existence and uniqueness in Sobolev spaces for first-order conformal causal relativistic viscous hydrodynamics. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021069

[7]

Ying Sui, Huimin Yu. Singularity formation for compressible Euler equations with time-dependent damping. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021062

[8]

Qigang Yuan, Jingli Ren. Periodic forcing on degenerate Hopf bifurcation. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2857-2877. doi: 10.3934/dcdsb.2020208

[9]

Sergi Simon. Linearised higher variational equations. Discrete & Continuous Dynamical Systems, 2014, 34 (11) : 4827-4854. doi: 10.3934/dcds.2014.34.4827

[10]

Paul E. Anderson, Timothy P. Chartier, Amy N. Langville, Kathryn E. Pedings-Behling. The rankability of weighted data from pairwise comparisons. Foundations of Data Science, 2021, 3 (1) : 1-26. doi: 10.3934/fods.2021002

[11]

Wen Si. Response solutions for degenerate reversible harmonic oscillators. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3951-3972. doi: 10.3934/dcds.2021023

[12]

Yunjuan Jin, Aifang Qu, Hairong Yuan. Radon measure solutions for steady compressible hypersonic-limit Euler flows passing cylindrically symmetric conical bodies. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021048

[13]

Françoise Demengel. Ergodic pairs for degenerate pseudo Pucci's fully nonlinear operators. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3465-3488. doi: 10.3934/dcds.2021004

[14]

Guanming Gai, Yuanyuan Nie, Chunpeng Wang. A degenerate elliptic problem from subsonic-sonic flows in convergent nozzles. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021070

[15]

Zhenbing Gong, Yanping Chen, Wenyu Tao. Jump and variational inequalities for averaging operators with variable kernels. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021045

[16]

Krzysztof A. Krakowski, Luís Machado, Fátima Silva Leite. A unifying approach for rolling symmetric spaces. Journal of Geometric Mechanics, 2021, 13 (1) : 145-166. doi: 10.3934/jgm.2020016

[17]

Craig Cowan. Supercritical elliptic problems involving a Cordes like operator. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021037

[18]

Sandrine Anthoine, Jean-François Aujol, Yannick Boursier, Clothilde Mélot. Some proximal methods for Poisson intensity CBCT and PET. Inverse Problems & Imaging, 2012, 6 (4) : 565-598. doi: 10.3934/ipi.2012.6.565

[19]

Takeshi Saito, Kazuyuki Yagasaki. Chebyshev spectral methods for computing center manifolds. Journal of Computational Dynamics, 2021  doi: 10.3934/jcd.2021008

[20]

Samira Shahsavari, Saeed Ketabchi. The proximal methods for solving absolute value equation. Numerical Algebra, Control & Optimization, 2021, 11 (3) : 449-460. doi: 10.3934/naco.2020037

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (120)
  • HTML views (191)
  • Cited by (0)

Other articles
by authors

[Back to Top]