    February  2021, 20(2): 559-582. doi: 10.3934/cpaa.2020281

## Classification and evolution of bifurcation curves for a porous-medium combustion problem with large activation energy

 1 Fundamental General Education Center, National Chin-Yi University of Technology, Taichung 411, Taiwan 2 Department of Mathematics, National Tsing Hua University, Hsinchu 300, Taiwan

* Corresponding author

Received  May 2020 Revised  September 2020 Published  December 2020

Fund Project: This work is partially supported by the Ministry of Science and Technology of the Republic of China under grant No. MOST 103-2115-M-167-002

We study the classification and evolution of bifurcation curves for the porous-medium combustion problem
 $\begin{equation*} \begin{cases} u^{\prime \prime }(x)+\lambda \dfrac{1+au}{1+e^{d(1-u)}} = 0, \ -1 where $ u $is the solid temperature, parameters $ \lambda >0 $, $ a\geq 0 $, and the activation energy parameter $ d>0 $is large. We mainly prove that, on the $ (\lambda , ||u||_{\infty }) $-plane, the bifurcation curve is S-shaped with exactly two turning points for any $ \ (d, a)\in \Omega \equiv \left \{ (d, a):(0
for some positive number
 $d_{1}\approx 2.225$
and a nonnegative, strictly decreasing function
 $A_{1}(d)$
defined on
 $(0, d_{1}].$
Furthermore, for any
 $\ (d, a)\in \Omega ,$
we give a classification and evolution of totally four different S-shaped bifurcation curves. In addition, for any
 $d>0$
and
 $a\geq \tilde{a}\approx 1.704$
for some positive
 $\tilde{a},$
then the bifurcation curve
 $S$
is type 4 S-shaped on the
 $(\lambda , \left \Vert u\right \Vert _{\infty })$
-plane.
Citation: Kuo-Chih Hung, Shin-Hwa Wang. Classification and evolution of bifurcation curves for a porous-medium combustion problem with large activation energy. Communications on Pure & Applied Analysis, 2021, 20 (2) : 559-582. doi: 10.3934/cpaa.2020281
##### References:
  A. Friedman and A. E. Tzavaras, Combustion in a porous medium, SIAM J. Math. Anal., 19 (1988), 509–519. doi: 10.1137/0519036.  Google Scholar  K. C. Hung and S. H. Wang, A theorem on S-shaped bifurcation curve for a positone problem with convex-concave nonlinearity and its applications to the perturbed Gelfand problem, J. Differ. Equ., 251 (2011), 223–237. doi: 10.1016/j.jde.2011.03.017.  Google Scholar  T. Laetsch, The number of solutions of a nonlinear two point boundary value problem, Indiana Univ. Math. J., 20 (1970), 1–13. doi: 10.1512/iumj.1970.20.20001.  Google Scholar  P. Nistri, Positive solutions of a nonlinear eigenvalue problem with discontinuous nonlinearity, Proc. Roy. Soc. Edinburgh Sect. A, 83 (1979), 133–145. doi: 10.1017/S0308210500011458.  Google Scholar  J. Norbury and A. M. Stuart, Parabolic free boundary problems arising in porous medium combustion, IMA J. Appl. Math., 39 (1987), 241–257. doi: 10.1093/imamat/39.3.241.  Google Scholar  J. Norbury and A. M. Stuart, A model for porous-medium combustion, Quart. J. Mech. Appl. Math., 42 (1989), 159–178. doi: 10.1093/qjmam/42.1.159.  Google Scholar  K. Scott, The Smouldering of Peat, Ph.D. Dissertation, University of Manchester, England, (2013), 178 pp. Google Scholar  S. H. Wang, Bifurcation of an equation arising in porous-medium combustion, IMA J. Appl. Math., 56 (1996), 219–234. doi: 10.1093/imamat/56.3.219.  Google Scholar  S. H. Wang and T. S. Yeh, A complete classification of bifurcation diagrams of a Dirichlet problem with concave-convex nonlinearities, J. Math. Anal. Appl., 291 (2004), 128–153. doi: 10.1016/j.jmaa.2003.10.021.  Google Scholar

show all references

##### References:
  A. Friedman and A. E. Tzavaras, Combustion in a porous medium, SIAM J. Math. Anal., 19 (1988), 509–519. doi: 10.1137/0519036.  Google Scholar  K. C. Hung and S. H. Wang, A theorem on S-shaped bifurcation curve for a positone problem with convex-concave nonlinearity and its applications to the perturbed Gelfand problem, J. Differ. Equ., 251 (2011), 223–237. doi: 10.1016/j.jde.2011.03.017.  Google Scholar  T. Laetsch, The number of solutions of a nonlinear two point boundary value problem, Indiana Univ. Math. J., 20 (1970), 1–13. doi: 10.1512/iumj.1970.20.20001.  Google Scholar  P. Nistri, Positive solutions of a nonlinear eigenvalue problem with discontinuous nonlinearity, Proc. Roy. Soc. Edinburgh Sect. A, 83 (1979), 133–145. doi: 10.1017/S0308210500011458.  Google Scholar  J. Norbury and A. M. Stuart, Parabolic free boundary problems arising in porous medium combustion, IMA J. Appl. Math., 39 (1987), 241–257. doi: 10.1093/imamat/39.3.241.  Google Scholar  J. Norbury and A. M. Stuart, A model for porous-medium combustion, Quart. J. Mech. Appl. Math., 42 (1989), 159–178. doi: 10.1093/qjmam/42.1.159.  Google Scholar  K. Scott, The Smouldering of Peat, Ph.D. Dissertation, University of Manchester, England, (2013), 178 pp. Google Scholar  S. H. Wang, Bifurcation of an equation arising in porous-medium combustion, IMA J. Appl. Math., 56 (1996), 219–234. doi: 10.1093/imamat/56.3.219.  Google Scholar  S. H. Wang and T. S. Yeh, A complete classification of bifurcation diagrams of a Dirichlet problem with concave-convex nonlinearities, J. Math. Anal. Appl., 291 (2004), 128–153. doi: 10.1016/j.jmaa.2003.10.021.  Google Scholar Four different types of S-shaped bifurcation curves $S$ of (1.1). (i). Type 1: $\lambda _{\ast }< \lambda ^{\ast }<\bar{ \lambda} = \infty .$ (ii). Type 2: $\lambda _{\ast }< \lambda ^{\ast }<\bar{ \lambda}<\infty .$ (iii). Type 3: $\lambda _{\ast }<\bar{ \lambda} = \lambda ^{\ast }.$ (iv). Type 4: $\lambda _{\ast }<\bar{ \lambda}< \lambda ^{\ast }.$ Classification of bifurcation curves $S$ for (1.1) with $d>0$ and $a\geq 0$. $d_{3}$ $(\approx 1.170)<d_{2}$ $(\approx 1.401)$ $<d_{1}$ $(\approx 2.225).$ The bifurcation curves $S$ for the region bounded between curves $A_{4}(d)$, $A_{5}(d)$ and $A_{1}(d)$ are all S-shaped Graph of $H_{d, a}(u)$ with $H_{d, a}(u_{0})\leq 0$ for some $u_{0}\in (0, \gamma _{d, a}]$ Graphs of functions $A_{4}(d)$ and $A_{5}(d)$ for $0<d\leq d_{3}$ $(\approx 1.170).$
  Nicolas Dirr, Hubertus Grillmeier, Günther Grün. On stochastic porous-medium equations with critical-growth conservative multiplicative noise. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2829-2871. doi: 10.3934/dcds.2020388  Matthias Erbar, Jan Maas. Gradient flow structures for discrete porous medium equations. Discrete & Continuous Dynamical Systems, 2014, 34 (4) : 1355-1374. doi: 10.3934/dcds.2014.34.1355  Xianjun Wang, Huaguang Gu, Bo Lu. Big homoclinic orbit bifurcation underlying post-inhibitory rebound spike and a novel threshold curve of a neuron. Electronic Research Archive, , () : -. doi: 10.3934/era.2021023  Siqi Chen, Yong-Kui Chang, Yanyan Wei. Pseudo $S$-asymptotically Bloch type periodic solutions to a damped evolution equation. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021017  Zaihong Wang, Jin Li, Tiantian Ma. An erratum note on the paper: Positive periodic solution for Brillouin electron beam focusing system. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1995-1997. doi: 10.3934/dcdsb.2013.18.1995  Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825  Qigang Yuan, Jingli Ren. Periodic forcing on degenerate Hopf bifurcation. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2857-2877. doi: 10.3934/dcdsb.2020208  Yanqin Fang, Jihui Zhang. Multiplicity of solutions for the nonlinear Schrödinger-Maxwell system. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1267-1279. doi: 10.3934/cpaa.2011.10.1267  Zhisu Liu, Yicheng Liu, Xiang Li. Flocking and line-shaped spatial configuration to delayed Cucker-Smale models. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3693-3716. doi: 10.3934/dcdsb.2020253  Guillermo Reyes, Juan-Luis Vázquez. Long time behavior for the inhomogeneous PME in a medium with slowly decaying density. Communications on Pure & Applied Analysis, 2009, 8 (2) : 493-508. doi: 10.3934/cpaa.2009.8.493  Manoel J. Dos Santos, Baowei Feng, Dilberto S. Almeida Júnior, Mauro L. Santos. Global and exponential attractors for a nonlinear porous elastic system with delay term. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2805-2828. doi: 10.3934/dcdsb.2020206  Tian Hou, Yi Wang, Xizhuang Xie. Instability and bifurcation of a cooperative system with periodic coefficients. Electronic Research Archive, , () : -. doi: 10.3934/era.2021026  Julian Tugaut. Captivity of the solution to the granular media equation. Kinetic & Related Models, 2021, 14 (2) : 199-209. doi: 10.3934/krm.2021002  Horst R. Thieme. Remarks on resolvent positive operators and their perturbation. Discrete & Continuous Dynamical Systems, 1998, 4 (1) : 73-90. doi: 10.3934/dcds.1998.4.73  Misha Perepelitsa. A model of cultural evolution in the context of strategic conflict. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021014  Claudianor O. Alves, César T. Ledesma. Multiplicity of solutions for a class of fractional elliptic problems with critical exponential growth and nonlocal Neumann condition. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021058  Pavol Bokes. Exact and WKB-approximate distributions in a gene expression model with feedback in burst frequency, burst size, and protein stability. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021126  Yuanqing Xu, Xiaoxiao Zheng, Jie Xin. New explicit and exact traveling wave solutions of (3+1)-dimensional KP equation. Mathematical Foundations of Computing, 2021  doi: 10.3934/mfc.2021006  Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2725-3737. doi: 10.3934/dcds.2020383  Anderson L. A. de Araujo, Marcelo Montenegro. Existence of solution and asymptotic behavior for a class of parabolic equations. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1213-1227. doi: 10.3934/cpaa.2021017

2019 Impact Factor: 1.105

## Metrics

• PDF downloads (50)
• HTML views (98)
• Cited by (0)

## Other articlesby authors

• on AIMS
• on Google Scholar

[Back to Top]