
-
Previous Article
Further regularity and uniqueness results for a non-isothermal Cahn-Hilliard equation
- CPAA Home
- This Issue
-
Next Article
Almost global existence for the Klein-Gordon equation with the Kirchhoff-type nonlinearity
Single species population dynamics in seasonal environment with short reproduction period
Bolyai Institute, University of Szeged, H-6720 Szeged, Hungary |
We present a periodic nonlinear scalar delay differential equation model for a population with short reproduction period. By transforming the equation to a discrete dynamical system, we reduce the infinite dimensional problem to one dimension. We determine the basic reproduction number not merely as the spectral radius of an operator, but as an explicit formula and show that is serves as a threshold parameter for the stability of the trivial equilibrium and for permanence.
References:
[1] |
M. Gyllenberg, I. Hanksi and T. Lindström, Continuous versus discrete single species population models with adjustable reproduction strategies, Bull. Math. Biol., 59 (1997), 679–705.
doi: 10.1007/BF02458425. |
[2] |
E. Liz, Clark's equation: a useful difference equation for population models, predictive control, and numerical approximations, Qual. Theory Dyn. Syst., 19 (2020), 11 pp.
doi: 10.1007/s12346-020-00405-1. |
[3] |
K. Nah and G. Röst, Stability threshold for scalar linear periodic delay differential equations, Canad. Math. Bull., 59 (2016), 849–857.
doi: 10.4153/CMB-2016-043-0. |
[4] |
R. Qesmi, A short survey on delay differential systems with periodic coefficients, J. Appl. Anal. Comput., 8 (2018), 296–330.
doi: 10.11948/2018.296. |
[5] |
G. Röst, Neimark–Sacker bifurcation for periodic delay differential equations, Nonlinear Anal., 60(2005), 1025–1044.
doi: 10.1016/j.na.2004.08.043. |
[6] |
H. L. Smith, An introduction to delay differential equations with applications to the life sciences, Texts in Applied Mathematics, Springer, New York, 2011.
doi: 10.1007/978-1-4419-7646-8. |
[7] |
H. R. Thieme, Mathematics in Population Biology, Princeton University Press, Princeton, NJ, 2003.
![]() |
[8] |
X. Q. Zhao,
Basic reproduction ratios for periodic compartmental models with time delay, J. Dyn. Differ. Equ., 29 (2017), 67-82.
doi: 10.1007/s10884-015-9425-2. |
show all references
References:
[1] |
M. Gyllenberg, I. Hanksi and T. Lindström, Continuous versus discrete single species population models with adjustable reproduction strategies, Bull. Math. Biol., 59 (1997), 679–705.
doi: 10.1007/BF02458425. |
[2] |
E. Liz, Clark's equation: a useful difference equation for population models, predictive control, and numerical approximations, Qual. Theory Dyn. Syst., 19 (2020), 11 pp.
doi: 10.1007/s12346-020-00405-1. |
[3] |
K. Nah and G. Röst, Stability threshold for scalar linear periodic delay differential equations, Canad. Math. Bull., 59 (2016), 849–857.
doi: 10.4153/CMB-2016-043-0. |
[4] |
R. Qesmi, A short survey on delay differential systems with periodic coefficients, J. Appl. Anal. Comput., 8 (2018), 296–330.
doi: 10.11948/2018.296. |
[5] |
G. Röst, Neimark–Sacker bifurcation for periodic delay differential equations, Nonlinear Anal., 60(2005), 1025–1044.
doi: 10.1016/j.na.2004.08.043. |
[6] |
H. L. Smith, An introduction to delay differential equations with applications to the life sciences, Texts in Applied Mathematics, Springer, New York, 2011.
doi: 10.1007/978-1-4419-7646-8. |
[7] |
H. R. Thieme, Mathematics in Population Biology, Princeton University Press, Princeton, NJ, 2003.
![]() |
[8] |
X. Q. Zhao,
Basic reproduction ratios for periodic compartmental models with time delay, J. Dyn. Differ. Equ., 29 (2017), 67-82.
doi: 10.1007/s10884-015-9425-2. |


[1] |
Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367 |
[2] |
Azeddine Elmajidi, Elhoussine Elmazoudi, Jamila Elalami, Noureddine Elalami. Dependent delay stability characterization for a polynomial T-S Carbon Dioxide model. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021035 |
[3] |
Seddigheh Banihashemi, Hossein Jafaria, Afshin Babaei. A novel collocation approach to solve a nonlinear stochastic differential equation of fractional order involving a constant delay. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021025 |
[4] |
Juan Manuel Pastor, Javier García-Algarra, Javier Galeano, José María Iriondo, José J. Ramasco. A simple and bounded model of population dynamics for mutualistic networks. Networks & Heterogeneous Media, 2015, 10 (1) : 53-70. doi: 10.3934/nhm.2015.10.53 |
[5] |
Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1779-1799. doi: 10.3934/dcdss.2020454 |
[6] |
Linlin Li, Bedreddine Ainseba. Large-time behavior of matured population in an age-structured model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2561-2580. doi: 10.3934/dcdsb.2020195 |
[7] |
Maolin Cheng, Yun Liu, Jianuo Li, Bin Liu. Nonlinear Grey Bernoulli model NGBM (1, 1)'s parameter optimisation method and model application. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021054 |
[8] |
Christophe Zhang. Internal rapid stabilization of a 1-D linear transport equation with a scalar feedback. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021006 |
[9] |
Zhikun She, Xin Jiang. Threshold dynamics of a general delayed within-host viral infection model with humoral immunity and two modes of virus transmission. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3835-3861. doi: 10.3934/dcdsb.2020259 |
[10] |
Michael Grinfeld, Amy Novick-Cohen. Some remarks on stability for a phase field model with memory. Discrete & Continuous Dynamical Systems, 2006, 15 (4) : 1089-1117. doi: 10.3934/dcds.2006.15.1089 |
[11] |
Ka Luen Cheung, Man Chun Leung. Asymptotic behavior of positive solutions of the equation $ \Delta u + K u^{\frac{n+2}{n-2}} = 0$ in $IR^n$ and positive scalar curvature. Conference Publications, 2001, 2001 (Special) : 109-120. doi: 10.3934/proc.2001.2001.109 |
[12] |
Wenjing Liu, Rong Yang, Xin-Guang Yang. Dynamics of a 3D Brinkman-Forchheimer equation with infinite delay. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021052 |
[13] |
Yunfei Lv, Rong Yuan, Yuan He. Wavefronts of a stage structured model with state--dependent delay. Discrete & Continuous Dynamical Systems, 2015, 35 (10) : 4931-4954. doi: 10.3934/dcds.2015.35.4931 |
[14] |
V. Vijayakumar, R. Udhayakumar, K. Kavitha. On the approximate controllability of neutral integro-differential inclusions of Sobolev-type with infinite delay. Evolution Equations & Control Theory, 2021, 10 (2) : 271-296. doi: 10.3934/eect.2020066 |
[15] |
Zengyun Wang, Jinde Cao, Zuowei Cai, Lihong Huang. Finite-time stability of impulsive differential inclusion: Applications to discontinuous impulsive neural networks. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2677-2692. doi: 10.3934/dcdsb.2020200 |
[16] |
Emanuela R. S. Coelho, Valéria N. Domingos Cavalcanti, Vinicius A. Peralta. Exponential stability for a transmission problem of a nonlinear viscoelastic wave equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021055 |
[17] |
Simão Correia, Mário Figueira. A generalized complex Ginzburg-Landau equation: Global existence and stability results. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021056 |
[18] |
Xuping Zhang. Pullback random attractors for fractional stochastic $ p $-Laplacian equation with delay and multiplicative noise. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021107 |
[19] |
Jihoon Lee, Nguyen Thanh Nguyen. Gromov-Hausdorff stability of reaction diffusion equations with Robin boundary conditions under perturbations of the domain and equation. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1263-1296. doi: 10.3934/cpaa.2021020 |
[20] |
Andrew Comech, Elena Kopylova. Orbital stability and spectral properties of solitary waves of Klein–Gordon equation with concentrated nonlinearity. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021063 |
2019 Impact Factor: 1.105
Tools
Metrics
Other articles
by authors
[Back to Top]