• Previous Article
    Ground state and nodal solutions for fractional Schrödinger-Maxwell-Kirchhoff systems with pure critical growth nonlinearity
  • CPAA Home
  • This Issue
  • Next Article
    The anisotropic fractional isoperimetric problem with respect to unconditional unit balls
February  2021, 20(2): 801-815. doi: 10.3934/cpaa.2020291

The boundedness of multi-linear and multi-parameter pseudo-differential operators

1. 

School of Science, Xi'an University of Posts and Telecommunications, Xi'an, Shanxi 710121, China

2. 

School of Mathematical Sciences, Chongqing Normal University, Chongqing 400000, China

* Corresponding author

Received  June 2020 Revised  October 2020 Published  December 2020

Fund Project: The authors were supported partly by NNSF of China (Grant No.11801049), the Open Project of Key Laboratory (No.CSSXKFKTZ202004), School of Mathematical Sciences, Chongqing Normal University, the Natural Science Foundation of Chongqing (cstc2019jcyjmsxmX0374, cstc2019jcyj-msxmX0295), Technology Project of Chongqing Education Committee (Grant No. KJQN201800514)

In this paper, we establish the boundedness on $ L^r(\mathbb{R}^{n_1}\times\mathbb{R}^{n_2}) $ of bilinear and bi-parameter pseudo-differential operators whose symbols $ \sigma(x,\xi,\eta)\in S^{(0,0)}_{(1,1),(\delta_1,\delta_2)} $   for $ x,\xi,\eta\in\mathbb{R}^{n_1}\times\mathbb{R}^{n_2} $ and $ 0\leq\delta_1,\delta_2<1 $, which extends the result of Dai and Lu in [8].

Citation: Liang Huang, Jiao Chen. The boundedness of multi-linear and multi-parameter pseudo-differential operators. Communications on Pure & Applied Analysis, 2021, 20 (2) : 801-815. doi: 10.3934/cpaa.2020291
References:
[1]

Á. BényiD. MaldonadoV. Naibo and R. H. Torres, On the Hörmander classes of bilinear pseudodifferential operators, Integral Equ. Oper. Theory, 67 (2010), 341-264.  doi: 10.1007/s00020-010-1782-y.  Google Scholar

[2]

Á. Bényi and R. H. Torres, Symbolic calculus and the transposes of bilinear pseudodifferential operators, Commun. Partial Differ. Equ., 28 (2003), 1161-1181.  doi: 10.1081/PDE-120021190.  Google Scholar

[3]

F. Bernicot, Local estimates and global continuities in Lebesgue spaces for bilinear operators, Anal. PDE, 1 (2008), 1-27.  doi: 10.2140/apde.2008.1.1.  Google Scholar

[4]

J. Chen and G. Lu, Hörmander type theorems for multi-linear and multi-parameter Fourier multiplier operators with limited smoothness, Nonlinear Anal., 101 (2014), 98-112.  doi: 10.1016/j.na.2014.01.005.  Google Scholar

[5]

J. Chen and G. Lu, Hömander type theorem on Bi-parameter Hardy spaces for Fourier multipliers with optimal smoothness, Rev. Mat. Iberoam., 34 (2018), 1541-1561.  doi: 10.4171/rmi/1035.  Google Scholar

[6]

M. Christ and J. L. Journé, Polynomial growth estimates for multilinear singular integral operators, Acta Math., 159 (1987), 51-80.  doi: 10.1007/BF02392554.  Google Scholar

[7]

R. Coifman and Y. Meyer, On commutators of singular integrals and bilinear singular integrals, Trans. Amer. Math. Soc., 212 (1975), 315-331.  doi: 10.2307/1998628.  Google Scholar

[8]

W. Dai and G. Lu, $L^p$ estimates for multi-linear and multi-parameter pseudo-differential operators, Bull. Soc. Math. France., 143 (2013), 567-597.  doi: 10.24033/bsmf.2698.  Google Scholar

[9]

W. DingG. Lu and Y. Zhu, Multi-parameter local Hardy spaces, Nonlinear. Anal., 184 (2019), 352-380.  doi: 10.1016/j.na.2019.02.014.  Google Scholar

[10]

C. Fefferman, $L^p$ bounds for pseudo-differential operators, Israel J. Math., 14 (1973), 413-417.  doi: 10.1007/BF02764718.  Google Scholar

[11]

C. Fefferman and E. M. Stein, Some maximal inequalities, Am. J. Math., 93 (1971), 107-115.  doi: 10.2307/2373450.  Google Scholar

[12]

L. Grafakos and R. H. Torres, Multilinear Calderón-Zygmund theory, Adv. Math., 165 (2002), 124-164.  doi: 10.1006/aima.2001.2028.  Google Scholar

[13]

Y. HanG. Lu and E. Sawyer, Flag Hardy spaces and Marcinkiewicz multipliers on the Heisenberg group, Anal. PDE, 7 (2014), 1465-1534.  doi: 10.2140/apde.2014.7.1465.  Google Scholar

[14]

L. Hörmander, On the $L^2$ continuity of pseudo-differential operators, Commun. Pure Appl. Math., 24 (1971), 529-535.  doi: 10.1002/cpa.3160240406.  Google Scholar

[15]

C. Kenig and E. M. Stein, Multilinear estimates and fractional integration, Math. Res. Lett., 6 (1999), 1-15.  doi: 10.4310/MRL.1999.v6.n1.a1.  Google Scholar

[16]

K. Koezuka and N. Tomita, Bilinear pseudo-differential operators with symbols in $BS^{m}_{1,1}$ on Triebel-Lizorkin spaces, J. Fourier Anal. Appl., 24 (2018), 309-319.  doi: 10.1007/s00041-016-9518-2.  Google Scholar

[17]

G. Lu and L. Zhang, $L^p$ estimates for a trilinear pseudo-differential operator with flag symbols, Indiana Univ. Math. J., 66 (2017), 877-900.  doi: 10.1512/iumj.2017.66.6069.  Google Scholar

[18]

A. Miyachi and N. Tomita, Estimates for trilinear flag paraproducts on $L^{\infty}$ and Hardy spaces, Math. Z., 282 (2016), 577-613.  doi: 10.1007/s00209-015-1554-0.  Google Scholar

[19]

C. Muscalu, Paraproducts with flag singularities. I. A case study, Rev. Mat. Iberoam, 23 (2007), 705-742.  doi: 10.4171/RMI/510.  Google Scholar

[20]

C. MuscaluJ. PipherT. Tao and C. Thiele, Bi-parameter paraproducts, Acta Math., 193 (2004), 269-296.  doi: 10.1007/BF02392566.  Google Scholar

[21]

C. MuscaluJ. PipherT. Tao and C. Thiele, Multi-parameter paraproducts, Rev. Mat. Iberoam, 22 (2006), 963-976.  doi: 10.4171/RMI/480.  Google Scholar

[22] C. Muscalu and W. Schlag, Classical and Multilinear Harmonic Analysis II, Cambridge Univ. Press, 2013.   Google Scholar

show all references

References:
[1]

Á. BényiD. MaldonadoV. Naibo and R. H. Torres, On the Hörmander classes of bilinear pseudodifferential operators, Integral Equ. Oper. Theory, 67 (2010), 341-264.  doi: 10.1007/s00020-010-1782-y.  Google Scholar

[2]

Á. Bényi and R. H. Torres, Symbolic calculus and the transposes of bilinear pseudodifferential operators, Commun. Partial Differ. Equ., 28 (2003), 1161-1181.  doi: 10.1081/PDE-120021190.  Google Scholar

[3]

F. Bernicot, Local estimates and global continuities in Lebesgue spaces for bilinear operators, Anal. PDE, 1 (2008), 1-27.  doi: 10.2140/apde.2008.1.1.  Google Scholar

[4]

J. Chen and G. Lu, Hörmander type theorems for multi-linear and multi-parameter Fourier multiplier operators with limited smoothness, Nonlinear Anal., 101 (2014), 98-112.  doi: 10.1016/j.na.2014.01.005.  Google Scholar

[5]

J. Chen and G. Lu, Hömander type theorem on Bi-parameter Hardy spaces for Fourier multipliers with optimal smoothness, Rev. Mat. Iberoam., 34 (2018), 1541-1561.  doi: 10.4171/rmi/1035.  Google Scholar

[6]

M. Christ and J. L. Journé, Polynomial growth estimates for multilinear singular integral operators, Acta Math., 159 (1987), 51-80.  doi: 10.1007/BF02392554.  Google Scholar

[7]

R. Coifman and Y. Meyer, On commutators of singular integrals and bilinear singular integrals, Trans. Amer. Math. Soc., 212 (1975), 315-331.  doi: 10.2307/1998628.  Google Scholar

[8]

W. Dai and G. Lu, $L^p$ estimates for multi-linear and multi-parameter pseudo-differential operators, Bull. Soc. Math. France., 143 (2013), 567-597.  doi: 10.24033/bsmf.2698.  Google Scholar

[9]

W. DingG. Lu and Y. Zhu, Multi-parameter local Hardy spaces, Nonlinear. Anal., 184 (2019), 352-380.  doi: 10.1016/j.na.2019.02.014.  Google Scholar

[10]

C. Fefferman, $L^p$ bounds for pseudo-differential operators, Israel J. Math., 14 (1973), 413-417.  doi: 10.1007/BF02764718.  Google Scholar

[11]

C. Fefferman and E. M. Stein, Some maximal inequalities, Am. J. Math., 93 (1971), 107-115.  doi: 10.2307/2373450.  Google Scholar

[12]

L. Grafakos and R. H. Torres, Multilinear Calderón-Zygmund theory, Adv. Math., 165 (2002), 124-164.  doi: 10.1006/aima.2001.2028.  Google Scholar

[13]

Y. HanG. Lu and E. Sawyer, Flag Hardy spaces and Marcinkiewicz multipliers on the Heisenberg group, Anal. PDE, 7 (2014), 1465-1534.  doi: 10.2140/apde.2014.7.1465.  Google Scholar

[14]

L. Hörmander, On the $L^2$ continuity of pseudo-differential operators, Commun. Pure Appl. Math., 24 (1971), 529-535.  doi: 10.1002/cpa.3160240406.  Google Scholar

[15]

C. Kenig and E. M. Stein, Multilinear estimates and fractional integration, Math. Res. Lett., 6 (1999), 1-15.  doi: 10.4310/MRL.1999.v6.n1.a1.  Google Scholar

[16]

K. Koezuka and N. Tomita, Bilinear pseudo-differential operators with symbols in $BS^{m}_{1,1}$ on Triebel-Lizorkin spaces, J. Fourier Anal. Appl., 24 (2018), 309-319.  doi: 10.1007/s00041-016-9518-2.  Google Scholar

[17]

G. Lu and L. Zhang, $L^p$ estimates for a trilinear pseudo-differential operator with flag symbols, Indiana Univ. Math. J., 66 (2017), 877-900.  doi: 10.1512/iumj.2017.66.6069.  Google Scholar

[18]

A. Miyachi and N. Tomita, Estimates for trilinear flag paraproducts on $L^{\infty}$ and Hardy spaces, Math. Z., 282 (2016), 577-613.  doi: 10.1007/s00209-015-1554-0.  Google Scholar

[19]

C. Muscalu, Paraproducts with flag singularities. I. A case study, Rev. Mat. Iberoam, 23 (2007), 705-742.  doi: 10.4171/RMI/510.  Google Scholar

[20]

C. MuscaluJ. PipherT. Tao and C. Thiele, Bi-parameter paraproducts, Acta Math., 193 (2004), 269-296.  doi: 10.1007/BF02392566.  Google Scholar

[21]

C. MuscaluJ. PipherT. Tao and C. Thiele, Multi-parameter paraproducts, Rev. Mat. Iberoam, 22 (2006), 963-976.  doi: 10.4171/RMI/480.  Google Scholar

[22] C. Muscalu and W. Schlag, Classical and Multilinear Harmonic Analysis II, Cambridge Univ. Press, 2013.   Google Scholar
[1]

Khalid Latrach, Hssaine Oummi, Ahmed Zeghal. Existence results for nonlinear mono-energetic singular transport equations: $ L^p $-spaces. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021028

[2]

Jiangang Qi, Bing Xie. Extremum estimates of the $ L^1 $-norm of weights for eigenvalue problems of vibrating string equations based on critical equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3505-3516. doi: 10.3934/dcdsb.2020243

[3]

Jong Yoon Hyun, Yoonjin Lee, Yansheng Wu. Connection of $ p $-ary $ t $-weight linear codes to Ramanujan Cayley graphs with $ t+1 $ eigenvalues. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2020133

[4]

Siqi Chen, Yong-Kui Chang, Yanyan Wei. Pseudo $ S $-asymptotically Bloch type periodic solutions to a damped evolution equation. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021017

[5]

Alfonso Castro, Jorge Cossio, Sigifredo Herrón, Carlos Vélez. Infinitely many radial solutions for a $ p $-Laplacian problem with indefinite weight. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021058

[6]

Said Taarabti. Positive solutions for the $ p(x)- $Laplacian : Application of the Nehari method. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021029

[7]

Raffaele Folino, Ramón G. Plaza, Marta Strani. Long time dynamics of solutions to $ p $-Laplacian diffusion problems with bistable reaction terms. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3211-3240. doi: 10.3934/dcds.2020403

[8]

Anhui Gu. Weak pullback mean random attractors for non-autonomous $ p $-Laplacian equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3863-3878. doi: 10.3934/dcdsb.2020266

[9]

Lei Liu, Li Wu. Multiplicity of closed characteristics on $ P $-symmetric compact convex hypersurfaces in $ \mathbb{R}^{2n} $. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2635-3652. doi: 10.3934/dcds.2020378

[10]

Wensheng Yin, Jinde Cao, Guoqiang Zheng. Further results on stabilization of stochastic differential equations with delayed feedback control under $ G $-expectation framework. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021072

[11]

Jennifer D. Key, Bernardo G. Rodrigues. Binary codes from $ m $-ary $ n $-cubes $ Q^m_n $. Advances in Mathematics of Communications, 2021, 15 (3) : 507-524. doi: 10.3934/amc.2020079

[12]

Chaoqian Li, Yajun Liu, Yaotang Li. Note on $ Z $-eigenvalue inclusion theorems for tensors. Journal of Industrial & Management Optimization, 2021, 17 (2) : 687-693. doi: 10.3934/jimo.2019129

[13]

Dean Crnković, Nina Mostarac, Bernardo G. Rodrigues, Leo Storme. $ s $-PD-sets for codes from projective planes $ \mathrm{PG}(2,2^h) $, $ 5 \leq h\leq 9 $. Advances in Mathematics of Communications, 2021, 15 (3) : 423-440. doi: 10.3934/amc.2020075

[14]

Shihu Li, Wei Liu, Yingchao Xie. Large deviations for stochastic 3D Leray-$ \alpha $ model with fractional dissipation. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2491-2509. doi: 10.3934/cpaa.2019113

[15]

Emma D'Aniello, Saber Elaydi. The structure of $ \omega $-limit sets of asymptotically non-autonomous discrete dynamical systems. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 903-915. doi: 10.3934/dcdsb.2019195

[16]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1631-1648. doi: 10.3934/dcdss.2020447

[17]

Raj Kumar, Maheshanand Bhaintwal. Duadic codes over $ \mathbb{Z}_4+u\mathbb{Z}_4 $. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2020135

[18]

Brian Ryals, Robert J. Sacker. Bifurcation in the almost periodic $ 2 $D Ricker map. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021089

[19]

Zhaoxia Wang, Hebai Chen. A nonsmooth van der Pol-Duffing oscillator (I): The sum of indices of equilibria is $ -1 $. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021096

[20]

Yishui Wang, Dongmei Zhang, Peng Zhang, Yong Zhang. Local search algorithm for the squared metric $ k $-facility location problem with linear penalties. Journal of Industrial & Management Optimization, 2021, 17 (4) : 2013-2030. doi: 10.3934/jimo.2020056

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (66)
  • HTML views (90)
  • Cited by (0)

Other articles
by authors

[Back to Top]