-
Previous Article
Discrete diffusion semigroups associated with Jacobi-Dunkl and exceptional Jacobi polynomials
- CPAA Home
- This Issue
- Next Article
Global existence and uniform estimates of solutions to reaction diffusion systems with mass transport type boundary conditions
Department of Mathematics, Indian Institute of Technology Jodhpur, NH 65, Nagaur Road, Karwar, Jodhpur 342037, India |
We consider reaction diffusion systems where components diffuse inside the domain and react on the surface through mass transport type boundary conditions. Under reasonable hypotheses, we establish the existence of component wise non-negative global solutions which are uniformly bounded in the sup norm.
References:
[1] |
S Abdelmalek and S Kouachi,
Proof of existence of global solutions for m-component reaction-diffusion systems with mixed boundary conditions via the Lyapunov functional method, J. Phys. A: Math. Theor., 40 (2007), 12335-12350.
doi: 10.1088/1751-8113/40/41/005. |
[2] |
José A. Cãnizo, Laurent Desvillettes and Klemens Fellner,
Improved duality estimates and applications to reaction-diffusion equations, Commun. Partial Differ. Equ., 39 (2014), 1185-1204.
doi: 10.1080/03605302.2013.829500. |
[3] |
J. Ding and S. Li,
Blow-up and global solutions for nonlinear reaction-diffusion equations with Neumann boundary conditions, Nonlinear Anal., 68 (2008), 507-514.
doi: 10.1016/j.na.2006.11.016. |
[4] |
Klemens Fellner, J. Morgan and Bao Quoc Tang, Uniform-in-time bounds for quadratic reaction-diffusion systems with mass dissipation in higher dimensions, arXiv: 1906.06902. Google Scholar |
[5] |
Klemens Fellner, J. Morgan and Bao Quoc Tang,
Global classical solutions to quadratic systems with mass control in arbitrary dimensions, Annales de l'Institut Henri Poincaré, 37 (2020), 281-307.
doi: 10.1016/j.anihpc.2019.09.003. |
[6] |
T. Goudon and A. Vasseur, Regularity analysis for systems of reaction-diffusion equations, Ann. Sci. Éc. Norm. Supér., (4) (2010), 117–142.
doi: 10.24033/asens.2117. |
[7] |
Selwyn L. Hollis, Robert H. Jr. Martin and Michel Pierre,
Global existence and boundedness in reaction-diffusion systems, SIAM J. Math. Anal., 18 (1987), 744-761.
doi: 10.1137/0518057. |
[8] |
O. A. Ladyzhenskaia and N. N. Ural'tseva, Linear and Quasilinear Elliptic Equations, Academic Press, New York, 1968.
![]() |
[9] |
O. A. Ladyzhenskaya, V. A. Solonnikov and N. N. Uraltseva, Linear and Quasilinear Equations of Parabolic Type, American Mathematical Society, Providence, R.I, 1968. |
[10] |
J. Morgan,
Global existence for semilinear parabolic systems, SIAM J. Math. Anal., 20 (1989), 1128-1144.
doi: 10.1137/0520075. |
[11] |
J. Morgan and Bao Quoc Tang,
Boundedness for reaction-diffusion systems with Lyapunov functions and intermediate sum conditions, Nonlinearity, 33 (2020), 3105-3133.
doi: 10.1088/1361-6544/ab8772. |
[12] |
J. Morgan and V. Sharma,
Global existence of solutions to volume-surface reaction diffusion systems with dynamic boundary conditions, Differ. Integral Equ., 33 (2020), 113-139.
|
[13] |
M. Pierre and Didier Schmitt,
Blowup in reaction-diffusion systems with dissipation of mass, SIAM Review, 42 (2000), 93-106.
doi: 10.1137/S0036144599359735. |
[14] |
M. Pierre,
Global existence in reaction-diffusion systems with control of mass: a survey, Milan J. Math., 78 (2010), 417-455.
doi: 10.1007/s00032-010-0133-4. |
[15] |
V. Sharma and J. Morgan,
Global existence of solutions to coupled reaction-diffusion systems with mass transport type of boundary conditions, SIAM J. Math. Anal., 48 (2016), 4202-4240.
doi: 10.1137/15M1015145. |
[16] |
V. Sharma and J. Morgan,
Uniform bounds for solutions to volume-surface reaction diffusion systems, Differ. Integral Equ., 30 (2017), 423-442.
|
[17] |
Bao Quoc Tang,
Global classical solutions to reaction-diffusion systems in one and two dimensions, Commun. Math. Sci., 16 (2018), 411-423.
doi: 10.4310/CMS.2018.v16.n2.a5. |
[18] |
M. E. Taylor, Partial Differential Equations I-III, Springer, 2011.
doi: 10.1007/978-1-4419-7049-7. |
show all references
References:
[1] |
S Abdelmalek and S Kouachi,
Proof of existence of global solutions for m-component reaction-diffusion systems with mixed boundary conditions via the Lyapunov functional method, J. Phys. A: Math. Theor., 40 (2007), 12335-12350.
doi: 10.1088/1751-8113/40/41/005. |
[2] |
José A. Cãnizo, Laurent Desvillettes and Klemens Fellner,
Improved duality estimates and applications to reaction-diffusion equations, Commun. Partial Differ. Equ., 39 (2014), 1185-1204.
doi: 10.1080/03605302.2013.829500. |
[3] |
J. Ding and S. Li,
Blow-up and global solutions for nonlinear reaction-diffusion equations with Neumann boundary conditions, Nonlinear Anal., 68 (2008), 507-514.
doi: 10.1016/j.na.2006.11.016. |
[4] |
Klemens Fellner, J. Morgan and Bao Quoc Tang, Uniform-in-time bounds for quadratic reaction-diffusion systems with mass dissipation in higher dimensions, arXiv: 1906.06902. Google Scholar |
[5] |
Klemens Fellner, J. Morgan and Bao Quoc Tang,
Global classical solutions to quadratic systems with mass control in arbitrary dimensions, Annales de l'Institut Henri Poincaré, 37 (2020), 281-307.
doi: 10.1016/j.anihpc.2019.09.003. |
[6] |
T. Goudon and A. Vasseur, Regularity analysis for systems of reaction-diffusion equations, Ann. Sci. Éc. Norm. Supér., (4) (2010), 117–142.
doi: 10.24033/asens.2117. |
[7] |
Selwyn L. Hollis, Robert H. Jr. Martin and Michel Pierre,
Global existence and boundedness in reaction-diffusion systems, SIAM J. Math. Anal., 18 (1987), 744-761.
doi: 10.1137/0518057. |
[8] |
O. A. Ladyzhenskaia and N. N. Ural'tseva, Linear and Quasilinear Elliptic Equations, Academic Press, New York, 1968.
![]() |
[9] |
O. A. Ladyzhenskaya, V. A. Solonnikov and N. N. Uraltseva, Linear and Quasilinear Equations of Parabolic Type, American Mathematical Society, Providence, R.I, 1968. |
[10] |
J. Morgan,
Global existence for semilinear parabolic systems, SIAM J. Math. Anal., 20 (1989), 1128-1144.
doi: 10.1137/0520075. |
[11] |
J. Morgan and Bao Quoc Tang,
Boundedness for reaction-diffusion systems with Lyapunov functions and intermediate sum conditions, Nonlinearity, 33 (2020), 3105-3133.
doi: 10.1088/1361-6544/ab8772. |
[12] |
J. Morgan and V. Sharma,
Global existence of solutions to volume-surface reaction diffusion systems with dynamic boundary conditions, Differ. Integral Equ., 33 (2020), 113-139.
|
[13] |
M. Pierre and Didier Schmitt,
Blowup in reaction-diffusion systems with dissipation of mass, SIAM Review, 42 (2000), 93-106.
doi: 10.1137/S0036144599359735. |
[14] |
M. Pierre,
Global existence in reaction-diffusion systems with control of mass: a survey, Milan J. Math., 78 (2010), 417-455.
doi: 10.1007/s00032-010-0133-4. |
[15] |
V. Sharma and J. Morgan,
Global existence of solutions to coupled reaction-diffusion systems with mass transport type of boundary conditions, SIAM J. Math. Anal., 48 (2016), 4202-4240.
doi: 10.1137/15M1015145. |
[16] |
V. Sharma and J. Morgan,
Uniform bounds for solutions to volume-surface reaction diffusion systems, Differ. Integral Equ., 30 (2017), 423-442.
|
[17] |
Bao Quoc Tang,
Global classical solutions to reaction-diffusion systems in one and two dimensions, Commun. Math. Sci., 16 (2018), 411-423.
doi: 10.4310/CMS.2018.v16.n2.a5. |
[18] |
M. E. Taylor, Partial Differential Equations I-III, Springer, 2011.
doi: 10.1007/978-1-4419-7049-7. |
[1] |
Guangying Lv, Jinlong Wei, Guang-an Zou. Noise and stability in reaction-diffusion equations. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021005 |
[2] |
Nabahats Dib-Baghdadli, Rabah Labbas, Tewfik Mahdjoub, Ahmed Medeghri. On some reaction-diffusion equations generated by non-domiciliated triatominae, vectors of Chagas disease. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021004 |
[3] |
Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189 |
[4] |
Yizhuo Wang, Shangjiang Guo. A SIS reaction-diffusion model with a free boundary condition and nonhomogeneous coefficients. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1627-1652. doi: 10.3934/dcdsb.2018223 |
[5] |
Mohamed Ouzahra. Approximate controllability of the semilinear reaction-diffusion equation governed by a multiplicative control. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021081 |
[6] |
Masahiro Ikeda, Ziheng Tu, Kyouhei Wakasa. Small data blow-up of semi-linear wave equation with scattering dissipation and time-dependent mass. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021011 |
[7] |
Ondrej Budáč, Michael Herrmann, Barbara Niethammer, Andrej Spielmann. On a model for mass aggregation with maximal size. Kinetic & Related Models, 2011, 4 (2) : 427-439. doi: 10.3934/krm.2011.4.427 |
[8] |
Meng-Xue Chang, Bang-Sheng Han, Xiao-Ming Fan. Global dynamics of the solution for a bistable reaction diffusion equation with nonlocal effect. Electronic Research Archive, , () : -. doi: 10.3934/era.2021024 |
[9] |
Weihua Jiang, Xun Cao, Chuncheng Wang. Turing instability and pattern formations for reaction-diffusion systems on 2D bounded domain. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021085 |
[10] |
Xiongxiong Bao, Wan-Tong Li. Existence and stability of generalized transition waves for time-dependent reaction-diffusion systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3621-3641. doi: 10.3934/dcdsb.2020249 |
[11] |
Arunima Bhattacharya, Micah Warren. $ C^{2, \alpha} $ estimates for solutions to almost Linear elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021024 |
[12] |
Guillaume Bal, Wenjia Jing. Homogenization and corrector theory for linear transport in random media. Discrete & Continuous Dynamical Systems, 2010, 28 (4) : 1311-1343. doi: 10.3934/dcds.2010.28.1311 |
[13] |
Jihoon Lee, Nguyen Thanh Nguyen. Gromov-Hausdorff stability of reaction diffusion equations with Robin boundary conditions under perturbations of the domain and equation. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1263-1296. doi: 10.3934/cpaa.2021020 |
[14] |
Rongchang Liu, Jiangyuan Li, Duokui Yan. New periodic orbits in the planar equal-mass three-body problem. Discrete & Continuous Dynamical Systems, 2018, 38 (4) : 2187-2206. doi: 10.3934/dcds.2018090 |
[15] |
Prasanta Kumar Barik, Ankik Kumar Giri, Rajesh Kumar. Mass-conserving weak solutions to the coagulation and collisional breakage equation with singular rates. Kinetic & Related Models, 2021, 14 (2) : 389-406. doi: 10.3934/krm.2021009 |
[16] |
Yingdan Ji, Wen Tan. Global well-posedness of a 3D Stokes-Magneto equations with fractional magnetic diffusion. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3271-3278. doi: 10.3934/dcdsb.2020227 |
[17] |
Yongqiang Fu, Xiaoju Zhang. Global existence and asymptotic behavior of weak solutions for time-space fractional Kirchhoff-type diffusion equations. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021091 |
[18] |
Chenjie Fan, Zehua Zhao. Decay estimates for nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3973-3984. doi: 10.3934/dcds.2021024 |
[19] |
Christophe Zhang. Internal rapid stabilization of a 1-D linear transport equation with a scalar feedback. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021006 |
[20] |
Vladimir Gaitsgory, Ilya Shvartsman. Linear programming estimates for Cesàro and Abel limits of optimal values in optimal control problems. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021102 |
2019 Impact Factor: 1.105
Tools
Metrics
Other articles
by authors
[Back to Top]