
-
Previous Article
Polynomial growth of high sobolev norms of solutions to the Zakharov-Kuznetsov equation
- CPAA Home
- This Issue
-
Next Article
Large-time behavior of solutions to unipolar Euler-Poisson equations with time-dependent damping
An overdetermined problem associated to the Finsler Laplacian
1. | Department of Mathematics "Federigo Enriques", Università degli Studi di Milano, Italy |
2. | Department of Mathematics and Computer Science, Università degli Studi di Cagliari, Italy |
We prove a rigidity result for the anisotropic Laplacian. More precisely, the domain of the problem is bounded by an unknown surface supporting a Dirichlet condition together with a Neumann-type condition which is not translation-invariant. Using a comparison argument, we show that the domain is in fact a Wulff shape. We also consider the more general case when the unknown surface is required to have its boundary on a given conical surface: in such a case, the domain of the problem is bounded by the unknown surface and by a portion of the given conical surface, which supports a homogeneous Neumann condition. We prove that the unknown surface lies on the boundary of a Wulff shape.
References:
[1] |
C. Bianchini and G. Ciraolo,
Wulff shape characterizations in overdetermined anisotropic elliptic problems, Commun. Partial Differ. Equ., 43 (2018), 790-820.
doi: 10.1080/03605302.2018.1475488. |
[2] |
C. Bianchini, G. Ciraolo and P. Salani, An overdetermined problem for the anisotropic capacity, Calc. Var., 55, 84 (2016).
doi: 10.1007/s00526-016-1011-x. |
[3] |
G. Bellettini and M. Paolini,
Anisotropic motion by mean curvature in the context of Finsler geometry, Hokkaido Math. J., 25 (1996), 537-566.
doi: 10.14492/hokmj/1351516749. |
[4] |
P. Cannarsa and C. Sinestrari, Semiconcave functions, Hamilton-Jacobi equations, and optimal control., Progress in Nonlinear Differential Equations and their Applications, 58. Birkhäuser, 2004. |
[5] |
A. Cianchi and P. Salani,
Overdetermined anisotropic elliptic problems, Math. Ann., 345 (2009), 859-881.
doi: 10.1007/s00208-009-0386-9. |
[6] |
G. Ciraolo, A. Figalli and A. Roncoroni, Symmetry results for critical anisotropic $p$-Laplacian equations in convex cones, Geom. Funct. Anal., 30 (2020), 770-803.
doi: 10.1007/s00039-020-00535-3. |
[7] |
G. Ciraolo and A. Roncoroni, Serrin's type overdetermined problems in convex cones, Calc. Var. Partial Differ. Equ., 59, 28 (2020).
doi: 10.1007/s00526-019-1678-x. |
[8] |
A. Farina and B. Kawohl,
Remarks on an overdetermined boundary value problem, Calc. Var. Partial Differ. Equ., 31 (2008), 351-357.
doi: 10.1007/s00526-007-0115-8. |
[9] |
A. Farina and E. Valdinoci,
On partially and globally overdetermined problems of elliptic type, Amer. J. Math., 135 (2013), 1699-1726.
doi: 10.1353/ajm.2013.0052. |
[10] |
E. Ferone and B. Kawohl,
Remarks on a Finsler-Laplacian, Proc. Amer. Math. Soc., 137 (2009), 247-253.
doi: 10.1090/S0002-9939-08-09554-3. |
[11] |
I. Fragalà and F. Gazzola,
Partially overdetermined elliptic boundary value problems, J. Differ. Equ., 245 (2008), 1299-1322.
doi: 10.1016/j.jde.2008.06.014. |
[12] |
I. Fragalà, F. Gazzola, J. Lamboley and M. Pierre,
Counterexamples to symmetry for partially overdetermined elliptic problems, Analysis, 29 (2009), 85-93.
doi: 10.1524/anly.2009.1016. |
[13] |
N. Garofalo and J. L. Lewis,
A symmetry result related to some overdetermined boundary value problems, Amer. J. Math., 111 (1989), 9-33.
doi: 10.2307/2374477. |
[14] |
A. Greco,
Comparison principle and constrained radial symmetry for the subdiffusive $p$-Laplacian, Publ. Mat., 58 (2014), 485-498.
doi: 10.5565/PUBLMAT_58214_24. |
[15] |
A. Greco,
Symmetry around the origin for some overdetermined problems, Adv. Math. Sci. Appl., 13 (2003), 387-399.
|
[16] |
P. L. Lions and F. Pacella,
Isoperimetric inequalities for convex cones, Proc. Amer. Math. Soc., 109 (1990), 477-485.
doi: 10.2307/2048011. |
[17] |
F. Pacella and G. Tralli,
Overdetermined problems and constant mean curvature surfaces in cones, Rev. Mat. Iberoam., 36 (2020), 841-867.
doi: 10.4171/rmi/1151. |
[18] |
A. Roncoroni, A symmetry result for the $\varphi$-Laplacian in model manifolds, preprint. Google Scholar |
[19] |
S. Salsa, Partial Differential Equations in Action. From Modelling to Theory, 3rd ed, Springer International Publishing, 2016.
doi: 10.1007/978-3-319-31238-5. |
[20] |
R. Schneider, Convex Bodies: The Brunn-Minkowski Theory, in Encyclopedia of Mathematics
and its Applications, Cambridge University Press, 1993.
doi: 10.1017/CBO9780511526282. |
[21] |
J. Serrin,
A symmetry problem in potential theory, Arch. Rational Mech. Anal., 43 (1971), 304-318.
doi: 10.1007/BF00250468. |
[22] |
G. Wang and C. Xia,
A characterization of the Wulff shape by an overdetermined anisotropic PDE, Arch. Rational Mech. Anal., 199 (2011), 99-115.
doi: 10.1007/s00205-010-0323-9. |
show all references
References:
[1] |
C. Bianchini and G. Ciraolo,
Wulff shape characterizations in overdetermined anisotropic elliptic problems, Commun. Partial Differ. Equ., 43 (2018), 790-820.
doi: 10.1080/03605302.2018.1475488. |
[2] |
C. Bianchini, G. Ciraolo and P. Salani, An overdetermined problem for the anisotropic capacity, Calc. Var., 55, 84 (2016).
doi: 10.1007/s00526-016-1011-x. |
[3] |
G. Bellettini and M. Paolini,
Anisotropic motion by mean curvature in the context of Finsler geometry, Hokkaido Math. J., 25 (1996), 537-566.
doi: 10.14492/hokmj/1351516749. |
[4] |
P. Cannarsa and C. Sinestrari, Semiconcave functions, Hamilton-Jacobi equations, and optimal control., Progress in Nonlinear Differential Equations and their Applications, 58. Birkhäuser, 2004. |
[5] |
A. Cianchi and P. Salani,
Overdetermined anisotropic elliptic problems, Math. Ann., 345 (2009), 859-881.
doi: 10.1007/s00208-009-0386-9. |
[6] |
G. Ciraolo, A. Figalli and A. Roncoroni, Symmetry results for critical anisotropic $p$-Laplacian equations in convex cones, Geom. Funct. Anal., 30 (2020), 770-803.
doi: 10.1007/s00039-020-00535-3. |
[7] |
G. Ciraolo and A. Roncoroni, Serrin's type overdetermined problems in convex cones, Calc. Var. Partial Differ. Equ., 59, 28 (2020).
doi: 10.1007/s00526-019-1678-x. |
[8] |
A. Farina and B. Kawohl,
Remarks on an overdetermined boundary value problem, Calc. Var. Partial Differ. Equ., 31 (2008), 351-357.
doi: 10.1007/s00526-007-0115-8. |
[9] |
A. Farina and E. Valdinoci,
On partially and globally overdetermined problems of elliptic type, Amer. J. Math., 135 (2013), 1699-1726.
doi: 10.1353/ajm.2013.0052. |
[10] |
E. Ferone and B. Kawohl,
Remarks on a Finsler-Laplacian, Proc. Amer. Math. Soc., 137 (2009), 247-253.
doi: 10.1090/S0002-9939-08-09554-3. |
[11] |
I. Fragalà and F. Gazzola,
Partially overdetermined elliptic boundary value problems, J. Differ. Equ., 245 (2008), 1299-1322.
doi: 10.1016/j.jde.2008.06.014. |
[12] |
I. Fragalà, F. Gazzola, J. Lamboley and M. Pierre,
Counterexamples to symmetry for partially overdetermined elliptic problems, Analysis, 29 (2009), 85-93.
doi: 10.1524/anly.2009.1016. |
[13] |
N. Garofalo and J. L. Lewis,
A symmetry result related to some overdetermined boundary value problems, Amer. J. Math., 111 (1989), 9-33.
doi: 10.2307/2374477. |
[14] |
A. Greco,
Comparison principle and constrained radial symmetry for the subdiffusive $p$-Laplacian, Publ. Mat., 58 (2014), 485-498.
doi: 10.5565/PUBLMAT_58214_24. |
[15] |
A. Greco,
Symmetry around the origin for some overdetermined problems, Adv. Math. Sci. Appl., 13 (2003), 387-399.
|
[16] |
P. L. Lions and F. Pacella,
Isoperimetric inequalities for convex cones, Proc. Amer. Math. Soc., 109 (1990), 477-485.
doi: 10.2307/2048011. |
[17] |
F. Pacella and G. Tralli,
Overdetermined problems and constant mean curvature surfaces in cones, Rev. Mat. Iberoam., 36 (2020), 841-867.
doi: 10.4171/rmi/1151. |
[18] |
A. Roncoroni, A symmetry result for the $\varphi$-Laplacian in model manifolds, preprint. Google Scholar |
[19] |
S. Salsa, Partial Differential Equations in Action. From Modelling to Theory, 3rd ed, Springer International Publishing, 2016.
doi: 10.1007/978-3-319-31238-5. |
[20] |
R. Schneider, Convex Bodies: The Brunn-Minkowski Theory, in Encyclopedia of Mathematics
and its Applications, Cambridge University Press, 1993.
doi: 10.1017/CBO9780511526282. |
[21] |
J. Serrin,
A symmetry problem in potential theory, Arch. Rational Mech. Anal., 43 (1971), 304-318.
doi: 10.1007/BF00250468. |
[22] |
G. Wang and C. Xia,
A characterization of the Wulff shape by an overdetermined anisotropic PDE, Arch. Rational Mech. Anal., 199 (2011), 99-115.
doi: 10.1007/s00205-010-0323-9. |



[1] |
Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261 |
[2] |
Peng Luo. Comparison theorem for diagonally quadratic BSDEs. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2543-2557. doi: 10.3934/dcds.2020374 |
[3] |
Alfonso Castro, Jorge Cossio, Sigifredo Herrón, Carlos Vélez. Infinitely many radial solutions for a $ p $-Laplacian problem with indefinite weight. Discrete & Continuous Dynamical Systems, 2021 doi: 10.3934/dcds.2021058 |
[4] |
Shi'an Wang, N. U. Ahmed. Optimal control and stabilization of building maintenance units based on minimum principle. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1713-1727. doi: 10.3934/jimo.2020041 |
[5] |
Braxton Osting, Jérôme Darbon, Stanley Osher. Statistical ranking using the $l^{1}$-norm on graphs. Inverse Problems & Imaging, 2013, 7 (3) : 907-926. doi: 10.3934/ipi.2013.7.907 |
[6] |
Yunjuan Jin, Aifang Qu, Hairong Yuan. Radon measure solutions for steady compressible hypersonic-limit Euler flows passing cylindrically symmetric conical bodies. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021048 |
[7] |
Ahmad Mousavi, Zheming Gao, Lanshan Han, Alvin Lim. Quadratic surface support vector machine with L1 norm regularization. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021046 |
[8] |
Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213 |
[9] |
Joe Gildea, Adrian Korban, Abidin Kaya, Bahattin Yildiz. Constructing self-dual codes from group rings and reverse circulant matrices. Advances in Mathematics of Communications, 2021, 15 (3) : 471-485. doi: 10.3934/amc.2020077 |
[10] |
Jinsen Guo, Yongwu Zhou, Baixun Li. The optimal pricing and service strategies of a dual-channel retailer under free riding. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021056 |
[11] |
Simone Cacace, Maurizio Falcone. A dynamic domain decomposition for the eikonal-diffusion equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 109-123. doi: 10.3934/dcdss.2016.9.109 |
[12] |
Jamal Mrazgua, El Houssaine Tissir, Mohamed Ouahi. Frequency domain $ H_{\infty} $ control design for active suspension systems. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021036 |
[13] |
Meiqiang Feng, Yichen Zhang. Positive solutions of singular multiparameter p-Laplacian elliptic systems. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021083 |
[14] |
Wei Xi Li, Chao Jiang Xu. Subellipticity of some complex vector fields related to the Witten Laplacian. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021047 |
[15] |
Shuang Wang, Dingbian Qian. Periodic solutions of p-Laplacian equations via rotation numbers. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021060 |
[16] |
Qing Liu, Bingo Wing-Kuen Ling, Qingyun Dai, Qing Miao, Caixia Liu. Optimal maximally decimated M-channel mirrored paraunitary linear phase FIR filter bank design via norm relaxed sequential quadratic programming. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1993-2011. doi: 10.3934/jimo.2020055 |
[17] |
Jiangang Qi, Bing Xie. Extremum estimates of the $ L^1 $-norm of weights for eigenvalue problems of vibrating string equations based on critical equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3505-3516. doi: 10.3934/dcdsb.2020243 |
[18] |
Carlos Fresneda-Portillo, Sergey E. Mikhailov. Analysis of Boundary-Domain Integral Equations to the mixed BVP for a compressible stokes system with variable viscosity. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3059-3088. doi: 10.3934/cpaa.2019137 |
[19] |
Xiaomao Deng, Xiao-Chuan Cai, Jun Zou. A parallel space-time domain decomposition method for unsteady source inversion problems. Inverse Problems & Imaging, 2015, 9 (4) : 1069-1091. doi: 10.3934/ipi.2015.9.1069 |
[20] |
Teddy Pichard. A moment closure based on a projection on the boundary of the realizability domain: 1D case. Kinetic & Related Models, 2020, 13 (6) : 1243-1280. doi: 10.3934/krm.2020045 |
2019 Impact Factor: 1.105
Tools
Metrics
Other articles
by authors
[Back to Top]