-
Previous Article
Scale pressure for amenable group actions
- CPAA Home
- This Issue
-
Next Article
Well-posedness and attractor for a strongly damped wave equation with supercritical nonlinearity on $ \mathbb{R}^{N} $
Rational limit cycles of Abel equations
1. | Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Catalonia, Spain |
2. | Departamento de Matemática, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1049-001, Lisboa, Portugal |
We deal with Abel equations $ dy/dx = A(x) y^2 + B(x) y^3 $, where $ A(x) $ and $ B(x) $ are real polynomials. We prove that these Abel equations can have at most two rational limit cycles and we characterize when this happens. Moreover we provide examples of these Abel equations with two nontrivial rational limit cycles.
References:
[1] |
A. Álvarez, J. L. Bravo and M. Fernández, The number of limit cycles for generalized Abel equations with periodic coefficients of definite sign, Commun. Pure Appl. Anal., 8 (2009), 1493-1501.
doi: 10.3934/cpaa.2009.8.1493. |
[2] |
M. J. Álvarez, J. L. Bravo and M. Fernández, Existence of non-trivial limit cycles in Abel equations with symmetries, Nonlinear Anal., 84 (2013), 18-28.
doi: 10.1016/j.na.2013.02.001. |
[3] |
A. Álvarez, J. L. Bravo and M. Fernández, Limit cycles of Abel equations of the first kind, J. Math. Anal. Appl., 423 (2015), 734-745.
doi: 10.1016/j.jmaa.2014.10.019. |
[4] |
M. J. Álvarez, J. L. Bravo, M. Fernández and R. Prohens, Centers and limit cycles for a family of Abel equations, J. Math. Anal. Appl., 453 (2017), 485-501.
doi: 10.1016/j.jmaa.2017.04.017. |
[5] |
M. J. Álvarez, J. L. Bravo, M. Fernández and R.Prohens, Alien limit cycles in Abel equations, J. Math. Anal. Appl., 482 (2020), 123525, 20 pp.
doi: 10.1016/j.jmaa.2019.123525. |
[6] |
M. J. Álvarez, A. Gasull and J. Yu, Lower bounds for the number of limit cycles of trigonometric Abel equations, J. Math. Anal. Appl., 342 (2008), 682-693.
doi: 10.1016/j.jmaa.2007.12.016. |
[7] |
M. A. M Alwash and N. G. Lloyd, Non-autonomous equations related to polylnomial two-dimensional systems, P. Roy. Soc. Edinb. A, 105 (1987), 129-152.
doi: 10.1017/S0308210500021971. |
[8] |
M. Blinov, M. Briskin and Y. Yomdin, Center conditions: parametric and model center problems, Israel J. Math., 118 (2000), 61-108.
doi: 10.1007/BF02803517. |
[9] |
J. L. Bravo, M. Fernández and A. Gasull, Limit cycles for some Abel equations having coefficients without fixed signs, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 19 (2009), 3869-3876.
doi: 10.1142/S0218127409025195. |
[10] |
J. L. Bravo, M. Fernández and A. Gasull, Stability of singular limit cycles for Abel equations, Discret. Contin. Dyn. S., 35 (2015), 1873-1890.
doi: 10.3934/dcds.2015.35.1873. |
[11] |
E. Fossas, J. M. Olm and H. Sira-Ramírez, Iterative approximation of limit cycles for a class of Abel equations, Phys. D, 237 (2008), 3159-3164.
doi: 10.1016/j.physd.2008.05.011. |
[12] |
J. P. Françoise, Local bifurcations of limit cycles, Abel equations and Liénard systems, in Normal Forms, Bifurcations and Finiteness Problems in Differential Equations, Kluwer Acad. Publ., Dordrecht, 2004.
doi: 10.1007/978-94-007-1025-2_4. |
[13] |
J. P. Françoise, Integrability and limit cycles for Abel equations, Banach Center Publ., Warsaw, 2011.
doi: 10.4064/bc94-0-11. |
[14] |
A. Gasull and J. Llibre, Limit cycles for a class of Abel equations, SIAM J. Math. Anal., 21 (1990), 1235-1244.
doi: 10.1137/0521068. |
[15] |
A. Gasull, From Abel's differential equations to Hilbert's sixteenth problem, (Catalan), Butl. Soc. Catalana Mat., 28 (2013), 123-146. |
[16] |
J. Giné, M. Grau and J. Llibre, On the polynomial limit cycles of polynomial differential equations, Israel J. Math., 181 (2011), 461-475.
doi: 10.1007/s11856-011-0019-3. |
[17] |
J. Huang and H. Liang, Estimate for the number of limit cycles of Abel equation via a geometric criterion on three curves, Nonlinear Differ. Equ. Appl., 24 (2017), 31 pp.
doi: 10.1007/s00030-017-0469-3. |
[18] |
Y. Ilyashenko, Hilbert-type numbers for Abel equations, growth and zeros of holomorphic functions, Nonlinearity, 13 (2000), 1337-1342.
doi: 10.1088/0951-7715/13/4/319. |
[19] |
C. Liu, C. Li, X. Wang and J. Wu, On the rational limit cycles of Abel equations, Chaos, Solitons and Fractals, 110 (2018), 28-32.
doi: 10.1016/j.chaos.2018.03.004. |
[20] |
N. G. Lloyd, A note on the number of limit cycles in certain two-dimensional systems, J London Math Soc., 20 (1979), 277-286.
doi: 10.1112/jlms/s2-20.2.277. |
[21] |
A. L. Neto, On the number of solutions of the equation $\frac{dx}{dt} = \sum_{j = 0}^n a_j (t) x^j$, $0 \le t \le 1$, for which $x(0) = x(1)$, Invent. Math., 59 (1980), 67-76.
doi: 10.1007/BF01390315. |
[22] |
P. Torres, Existence of closed solutions for a polynomial first order differential equation, J. Math. Anal. Appl., 328 (2007), 1108-1116.
doi: 10.1016/j.jmaa.2006.05.078. |
[23] |
G. D. Wang and W. C. Chen, The number of closed solutions to the Abel equation and its application, (Chinese), J. Systems Sci. Math. Sci., 25 (2005), 693-699. |
[24] |
X. D. Xie and S. L. Cai, The number of limit cycles for the Abel equation and its application(Chinese), Gaoxiao Yingyong Shuxue Xuebao Ser. A, 9 (1994), 266-274. |
[25] |
J. F. Zhang, Limit cycles for a class of Abel equations with coefficients that change sign(Chinese), Chinese Ann. Math. Ser. A, 18 (1997), 271-278. |
[26] |
J. F. Zhang and X. X. Chen, Some criteria for limit cycles of a class of Abel equations(Chinese), J. Fuzhou Univ. Nat. Sci. Ed., 27 (1999), 9-11. |
show all references
References:
[1] |
A. Álvarez, J. L. Bravo and M. Fernández, The number of limit cycles for generalized Abel equations with periodic coefficients of definite sign, Commun. Pure Appl. Anal., 8 (2009), 1493-1501.
doi: 10.3934/cpaa.2009.8.1493. |
[2] |
M. J. Álvarez, J. L. Bravo and M. Fernández, Existence of non-trivial limit cycles in Abel equations with symmetries, Nonlinear Anal., 84 (2013), 18-28.
doi: 10.1016/j.na.2013.02.001. |
[3] |
A. Álvarez, J. L. Bravo and M. Fernández, Limit cycles of Abel equations of the first kind, J. Math. Anal. Appl., 423 (2015), 734-745.
doi: 10.1016/j.jmaa.2014.10.019. |
[4] |
M. J. Álvarez, J. L. Bravo, M. Fernández and R. Prohens, Centers and limit cycles for a family of Abel equations, J. Math. Anal. Appl., 453 (2017), 485-501.
doi: 10.1016/j.jmaa.2017.04.017. |
[5] |
M. J. Álvarez, J. L. Bravo, M. Fernández and R.Prohens, Alien limit cycles in Abel equations, J. Math. Anal. Appl., 482 (2020), 123525, 20 pp.
doi: 10.1016/j.jmaa.2019.123525. |
[6] |
M. J. Álvarez, A. Gasull and J. Yu, Lower bounds for the number of limit cycles of trigonometric Abel equations, J. Math. Anal. Appl., 342 (2008), 682-693.
doi: 10.1016/j.jmaa.2007.12.016. |
[7] |
M. A. M Alwash and N. G. Lloyd, Non-autonomous equations related to polylnomial two-dimensional systems, P. Roy. Soc. Edinb. A, 105 (1987), 129-152.
doi: 10.1017/S0308210500021971. |
[8] |
M. Blinov, M. Briskin and Y. Yomdin, Center conditions: parametric and model center problems, Israel J. Math., 118 (2000), 61-108.
doi: 10.1007/BF02803517. |
[9] |
J. L. Bravo, M. Fernández and A. Gasull, Limit cycles for some Abel equations having coefficients without fixed signs, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 19 (2009), 3869-3876.
doi: 10.1142/S0218127409025195. |
[10] |
J. L. Bravo, M. Fernández and A. Gasull, Stability of singular limit cycles for Abel equations, Discret. Contin. Dyn. S., 35 (2015), 1873-1890.
doi: 10.3934/dcds.2015.35.1873. |
[11] |
E. Fossas, J. M. Olm and H. Sira-Ramírez, Iterative approximation of limit cycles for a class of Abel equations, Phys. D, 237 (2008), 3159-3164.
doi: 10.1016/j.physd.2008.05.011. |
[12] |
J. P. Françoise, Local bifurcations of limit cycles, Abel equations and Liénard systems, in Normal Forms, Bifurcations and Finiteness Problems in Differential Equations, Kluwer Acad. Publ., Dordrecht, 2004.
doi: 10.1007/978-94-007-1025-2_4. |
[13] |
J. P. Françoise, Integrability and limit cycles for Abel equations, Banach Center Publ., Warsaw, 2011.
doi: 10.4064/bc94-0-11. |
[14] |
A. Gasull and J. Llibre, Limit cycles for a class of Abel equations, SIAM J. Math. Anal., 21 (1990), 1235-1244.
doi: 10.1137/0521068. |
[15] |
A. Gasull, From Abel's differential equations to Hilbert's sixteenth problem, (Catalan), Butl. Soc. Catalana Mat., 28 (2013), 123-146. |
[16] |
J. Giné, M. Grau and J. Llibre, On the polynomial limit cycles of polynomial differential equations, Israel J. Math., 181 (2011), 461-475.
doi: 10.1007/s11856-011-0019-3. |
[17] |
J. Huang and H. Liang, Estimate for the number of limit cycles of Abel equation via a geometric criterion on three curves, Nonlinear Differ. Equ. Appl., 24 (2017), 31 pp.
doi: 10.1007/s00030-017-0469-3. |
[18] |
Y. Ilyashenko, Hilbert-type numbers for Abel equations, growth and zeros of holomorphic functions, Nonlinearity, 13 (2000), 1337-1342.
doi: 10.1088/0951-7715/13/4/319. |
[19] |
C. Liu, C. Li, X. Wang and J. Wu, On the rational limit cycles of Abel equations, Chaos, Solitons and Fractals, 110 (2018), 28-32.
doi: 10.1016/j.chaos.2018.03.004. |
[20] |
N. G. Lloyd, A note on the number of limit cycles in certain two-dimensional systems, J London Math Soc., 20 (1979), 277-286.
doi: 10.1112/jlms/s2-20.2.277. |
[21] |
A. L. Neto, On the number of solutions of the equation $\frac{dx}{dt} = \sum_{j = 0}^n a_j (t) x^j$, $0 \le t \le 1$, for which $x(0) = x(1)$, Invent. Math., 59 (1980), 67-76.
doi: 10.1007/BF01390315. |
[22] |
P. Torres, Existence of closed solutions for a polynomial first order differential equation, J. Math. Anal. Appl., 328 (2007), 1108-1116.
doi: 10.1016/j.jmaa.2006.05.078. |
[23] |
G. D. Wang and W. C. Chen, The number of closed solutions to the Abel equation and its application, (Chinese), J. Systems Sci. Math. Sci., 25 (2005), 693-699. |
[24] |
X. D. Xie and S. L. Cai, The number of limit cycles for the Abel equation and its application(Chinese), Gaoxiao Yingyong Shuxue Xuebao Ser. A, 9 (1994), 266-274. |
[25] |
J. F. Zhang, Limit cycles for a class of Abel equations with coefficients that change sign(Chinese), Chinese Ann. Math. Ser. A, 18 (1997), 271-278. |
[26] |
J. F. Zhang and X. X. Chen, Some criteria for limit cycles of a class of Abel equations(Chinese), J. Fuzhou Univ. Nat. Sci. Ed., 27 (1999), 9-11. |
[1] |
Naeem M. H. Alkoumi, Pedro J. Torres. Estimates on the number of limit cycles of a generalized Abel equation. Discrete & Continuous Dynamical Systems, 2011, 31 (1) : 25-34. doi: 10.3934/dcds.2011.31.25 |
[2] |
Marcelo Messias. Periodic perturbation of quadratic systems with two infinite heteroclinic cycles. Discrete & Continuous Dynamical Systems, 2012, 32 (5) : 1881-1899. doi: 10.3934/dcds.2012.32.1881 |
[3] |
Thomas Alazard. A minicourse on the low Mach number limit. Discrete & Continuous Dynamical Systems - S, 2008, 1 (3) : 365-404. doi: 10.3934/dcdss.2008.1.365 |
[4] |
Jon Aaronson, Dalia Terhesiu. Local limit theorems for suspended semiflows. Discrete & Continuous Dynamical Systems, 2020, 40 (12) : 6575-6609. doi: 10.3934/dcds.2020294 |
[5] |
Kamel Hamdache, Djamila Hamroun. Macroscopic limit of the kinetic Bloch equation. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021015 |
[6] |
Elena Bonetti, Pierluigi Colli, Gianni Gilardi. Singular limit of an integrodifferential system related to the entropy balance. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 1935-1953. doi: 10.3934/dcdsb.2014.19.1935 |
[7] |
Seung-Yeal Ha, Jinwook Jung, Jeongho Kim, Jinyeong Park, Xiongtao Zhang. A mean-field limit of the particle swarmalator model. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021011 |
[8] |
Hai-Liang Li, Tong Yang, Mingying Zhong. Diffusion limit of the Vlasov-Poisson-Boltzmann system. Kinetic & Related Models, 2021, 14 (2) : 211-255. doi: 10.3934/krm.2021003 |
[9] |
Raz Kupferman, Cy Maor. The emergence of torsion in the continuum limit of distributed edge-dislocations. Journal of Geometric Mechanics, 2015, 7 (3) : 361-387. doi: 10.3934/jgm.2015.7.361 |
[10] |
Jihoon Lee, Ngocthach Nguyen. Flows with the weak two-sided limit shadowing property. Discrete & Continuous Dynamical Systems, 2021 doi: 10.3934/dcds.2021040 |
[11] |
Rong Rong, Yi Peng. KdV-type equation limit for ion dynamics system. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021037 |
[12] |
Boris Kramer, John R. Singler. A POD projection method for large-scale algebraic Riccati equations. Numerical Algebra, Control & Optimization, 2016, 6 (4) : 413-435. doi: 10.3934/naco.2016018 |
[13] |
Zheng Liu, Tianxiao Wang. A class of stochastic Fredholm-algebraic equations and applications in finance. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3879-3903. doi: 10.3934/dcdsb.2020267 |
[14] |
Emma D'Aniello, Saber Elaydi. The structure of $ \omega $-limit sets of asymptotically non-autonomous discrete dynamical systems. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 903-915. doi: 10.3934/dcdsb.2019195 |
[15] |
Vo Anh Khoa, Thi Kim Thoa Thieu, Ekeoma Rowland Ijioma. On a pore-scale stationary diffusion equation: Scaling effects and correctors for the homogenization limit. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2451-2477. doi: 10.3934/dcdsb.2020190 |
[16] |
Yunjuan Jin, Aifang Qu, Hairong Yuan. Radon measure solutions for steady compressible hypersonic-limit Euler flows passing cylindrically symmetric conical bodies. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021048 |
[17] |
Z. Reichstein and B. Youssin. Parusinski's "Key Lemma" via algebraic geometry. Electronic Research Announcements, 1999, 5: 136-145. |
[18] |
Vladimir Gaitsgory, Ilya Shvartsman. Linear programming estimates for Cesàro and Abel limits of optimal values in optimal control problems. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021102 |
[19] |
Flank D. M. Bezerra, Jacson Simsen, Mariza Stefanello Simsen. Convergence of quasilinear parabolic equations to semilinear equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3823-3834. doi: 10.3934/dcdsb.2020258 |
[20] |
Sergi Simon. Linearised higher variational equations. Discrete & Continuous Dynamical Systems, 2014, 34 (11) : 4827-4854. doi: 10.3934/dcds.2014.34.4827 |
2019 Impact Factor: 1.105
Tools
Article outline
[Back to Top]