March  2021, 20(3): 1103-1133. doi: 10.3934/cpaa.2021009

Boundary-Domain Integral Equations equivalent to an exterior mixed BVP for the variable-viscosity compressible Stokes PDEs

1. 

Department of Mathematics, Brunel University London, UK

2. 

Department of Quantitative Methods, Universidad Loyola Andalucía, Sevilla, Spain

* Corresponding author

Received  August 2020 Revised  November 2020 Published  January 2021

Fund Project: This research was supported by the grants EP/H020497/1, EP/M013545/1, and 1636273 from the EPSRC, UK, and also by Brunel University London

Two direct systems of Boundary-Domain Integral Equations, BDIEs, associated with a mixed boundary value problem for the stationary compressible Stokes system with variable viscosity coefficient in an exterior domain of $ \mathbb{R}^3 $ are derived. This is done by employing the Stokes surface and volume potentials based on an appropriate parametrix (Levi function) in the third Green identities for the velocity and pressure. Mapping properties of the potentials in weighted Sobolev spaces are analysed. Finally, the equivalence between the BDIE systems and the BVP is shown and the isomorphism of operators defined by the BDIE systems is proved.

Citation: Sergey E. Mikhailov, Carlos F. Portillo. Boundary-Domain Integral Equations equivalent to an exterior mixed BVP for the variable-viscosity compressible Stokes PDEs. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1103-1133. doi: 10.3934/cpaa.2021009
References:
[1]

F. Alliot and C. Amrouche, Weak solutions for the exterior Stokes problem in weighted Sobolev spaces, Math. Meth. Appl. Sci., 23 (2000), 575-600.  doi: 10.1002/(SICI)1099-1476(200004)23:6<575::AID-MMA128>3.0.CO;2-4.  Google Scholar

[2]

C. AmroucheV. Girault and J. Giroire, Dirichlet and Neumann exterior problems for the $n$-dimensional Laplace operator. An approach in weighted Sobolev spaces, J. Math. Pures Appl., 76 (1997), 55-81.  doi: 10.1016/S0021-7824(97)89945-X.  Google Scholar

[3]

A. Bossavit, Électromagnétisme, en Vue de la Modélisation, Springer, Berlin, 2003.  Google Scholar

[4]

H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer, New York, 2011.  Google Scholar

[5]

O. ChkaduaS. E. Mikhailov and D. Natroshvili, Analysis of direct boundary-domain integral equations for a mixed BVP with variable coefficient, I: Equivalence and invertibility, J. Integral Equ. Appl., 21 (2009), 499-543.  doi: 10.1216/JIE-2009-21-4-499.  Google Scholar

[6]

O. Chkadua, S. E. Mikhailov and D. Natroshvili, Analysis of direct segregated boundary-domain integral equations for variable-coefficient mixed BVPs in exterior domains, Anal. Appl., 11 (2013), 1350006, 33 pp. doi: 10.1142/S0219530513500061.  Google Scholar

[7]

M. Costabel, Boundary integral operators on Lipschitz domains: Elementary results, SIAM J. Math. Anal., 19 (1988), 613-626.  doi: 10.1137/0519043.  Google Scholar

[8]

T. T. Dufera and S. E. Mikhailov, Boundary-domain integral equations for variable-coefficient Dirichlet BVP in 2D unbounded domain, in Analysis, Probability, Applications, and Computations (eds. Lindahl et al), Springer Nature, Switzerland AG, 2019. doi: 10.1007/978-3-030-04459-6_46.  Google Scholar

[9]

C. Fresneda-Portillo and S. E. Mikhailov, Analysis of boundary-domain integral equations to the mixed BVP for a compressible Stokes system with variable viscosity, Commun. Pure Appl. Anal., 18 (2019), 3059-3088.  doi: 10.3934/cpaa.2019137.  Google Scholar

[10]

J. Giroire, Étude de quelques problèmes aux limites extérieurs et résolution par équations intégrales, Thése de Doctorat d'État, Université Pierre-et-Marie-Curie (Paris VI), 1987. Google Scholar

[11]

J. Giroire and J. Nedelec, Numerical solution of an exterior Neumann problem using a double layer potential, Math. Comp., 32 (1978), 973-990.  doi: 10.2307/2006329.  Google Scholar

[12]

R. GuttM. KohrS. E. Mikhailov and W. L. Wendland, On the mixed problem for the semilinear Darcy-Forchheimer-Brinkman PDE system in Besov spaces on creased Lipschitz domains, Math. Methods in Appl. Sci., 40 (2017), 7780-7829.  doi: 10.1002/mma.4562.  Google Scholar

[13]

B. Hanouzet, Espaces de Sobolev avec Poids. Application au probleme de Dirichlet dans un demi espace, Rendiconti del Seminario Matematico della Universita di Padova, 46 (1971), 227-272.   Google Scholar

[14]

G. C. Hsiao and W. L. Wendland, Boundary Integral Equations, Springer, Berlin, 2008. doi: 10.1007/978-3-540-68545-6.  Google Scholar

[15]

M. Kohr, M. Lanza de Cristoforis, S. E. Mikhailov and W. L. Wendland, Integral potential method for transmission problem with Lipschitz interface in $\mathbb R^3$ for the Stokes and Darcy-Forchheimer-Brinkman PDE systems, Z. Angew. Math. Phys., 67 (2016), 116, 30pp. doi: 10.1007/s00033-016-0696-1.  Google Scholar

[16]

M. Kohr, S. E. Mikhailov and W. L. Wendland, Variational approach for layer potentials of the Stokes system with $L_{\infty}$ symmetrically elliptic coefficient tensor and applications to Stokes and Navier-Stokes boundary problems, arXiv: 2002.09990. Google Scholar

[17]

M. Kohr and W. L. Wendland, Variational boundary integral equations for the Stokes system, Appl. Anal., 85 (2006), 1343-1372.  doi: 10.1080/00036810600963961.  Google Scholar

[18]

M. Kohr and W. L. Wendland, Boundary value problems for the Brinkman system with $L_{\infty }$ coefficients in Lipschitz domains on compact Riemannian manifolds. A variational approach, J. Math. Pures Appl., 131 (2019), 17-63.  doi: 10.1016/j.matpur.2019.04.002.  Google Scholar

[19]

O. A. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Flow, Gordon & Breach, New York, 1969.  Google Scholar

[20]

J. L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications, Springer, Berlin, 1973.  Google Scholar

[21] W. McLean, Strongly Elliptic Systems and Boundary Integral Equations, Cambridge University Press, Cambridge, UK, 2000.   Google Scholar
[22]

S. E. Mikhailov, Traces, extensions and co-normal derivatives for elliptic systems on Lipschitz domains, J. Math. Anal. Appl., 378 (2011), 324-342.  doi: 10.1016/j.jmaa.2010.12.027.  Google Scholar

[23]

S. E. Mikhailov, Localized boundary-domain integral formulations for problems with variable coefficients, Eng. Anal. Bound. Elem., 26 (2002), 681-690.  doi: 10.1016/S0955-7997(02)00030-9.  Google Scholar

[24]

S. E. Mikhailov, Analysis of segregated boundary-domain integral equations for BVPs with non-smooth coefficient on Lipschitz domains, Bound. Value Probl., 87 (2018), 1-52.  doi: 10.1186/s13661-018-0992-0.  Google Scholar

[25]

S. E. Mikhailov and C. F. Portillo, BDIE system to the mixed BVP for the Stokes equations with variable viscosity, in Integral Methods in Science and Engineering: Theoretical and Computational Advances (eds. C. Constanda and A. Kirsh), Springer, Boston, 2015.  Google Scholar

[26]

S. E. Mikhailov and C. F. Portillo, A new family of boundary-domain integral equations for a mixed elliptic BVP with variable coefficient, in Proceedings of the 10th UK Conference on Boundary Integral Methods (ed. P. Harris), Brighton University Press, 2015. Google Scholar

[27]

S. E. Mikhailov and C. F. Portillo, BDIEs for the compressible Stokes system with variable viscosity mixed BVP in bounded domains, in Proceedings of the 11th UK Conference on Boundary Integral Methods (ed. D.J. Chappell), Nottingham Trent Univ., 2017. Google Scholar

[28]

I. Mitrea and M. Mitrea, The Poisson problem with mixed boundary conditions in Sobolev and Besov spaces in non-smooth domains, T. Am. Math. Soc., 359 (2007), 4143-4182. doi: 10.1090/S0002-9947-07-04146-3.  Google Scholar

[29]

J. Nedelec, Acoustic and Electromagnetic Equations, Springer-Verlag, New York, 2001. doi: 10.1007/978-1-4757-4393-7.  Google Scholar

[30]

J. Nedelec and J. Planchard, Une méthode variationnelle d'éléments finis pour la résolution numérique d'un problème extérieur dans $\mathbb{R}^{3}$, RAIRO, 7 (1973), 105-129.   Google Scholar

[31]

J. B. Neto, Inhomogeneous boundary value problems in a half space, Ann. Sc. Sup. Pisa, 19 (1965), 331-365.   Google Scholar

[32]

B. Reidinger and O. Steinbach, A symmetric boundary element method for the Stokes problem in multiple connected domains, Math. Meth. Appl. Sci., 26 (2003), 77-93.  doi: 10.1002/mma.347.  Google Scholar

[33]

O. Steinbach, Numerical Approximation Methods for Elliptic Boundary Value Problems, Springer, Berlin, 2007. doi: 10.1007/978-0-387-68805-3.  Google Scholar

[34]

R. Temam, Navier-Stokes Equations, AMS Chelsea Edition, American Mathematical Society, 2001. doi: 10.1090/chel/343.  Google Scholar

[35]

H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, North-Holland, Amsterdam, 1978.  Google Scholar

[36]

W. Varnhorn, The Stokes Equations, Akademie Verlag, Berlin, 1994.  Google Scholar

[37]

W. L. Wendland and J. Zhu, The boundary element method for three dimensional Stokes flow exterior to an open surface, Math. Comput. Model., 6 (1991), 19-42.  doi: 10.1016/0895-7177(91)90021-X.  Google Scholar

show all references

References:
[1]

F. Alliot and C. Amrouche, Weak solutions for the exterior Stokes problem in weighted Sobolev spaces, Math. Meth. Appl. Sci., 23 (2000), 575-600.  doi: 10.1002/(SICI)1099-1476(200004)23:6<575::AID-MMA128>3.0.CO;2-4.  Google Scholar

[2]

C. AmroucheV. Girault and J. Giroire, Dirichlet and Neumann exterior problems for the $n$-dimensional Laplace operator. An approach in weighted Sobolev spaces, J. Math. Pures Appl., 76 (1997), 55-81.  doi: 10.1016/S0021-7824(97)89945-X.  Google Scholar

[3]

A. Bossavit, Électromagnétisme, en Vue de la Modélisation, Springer, Berlin, 2003.  Google Scholar

[4]

H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer, New York, 2011.  Google Scholar

[5]

O. ChkaduaS. E. Mikhailov and D. Natroshvili, Analysis of direct boundary-domain integral equations for a mixed BVP with variable coefficient, I: Equivalence and invertibility, J. Integral Equ. Appl., 21 (2009), 499-543.  doi: 10.1216/JIE-2009-21-4-499.  Google Scholar

[6]

O. Chkadua, S. E. Mikhailov and D. Natroshvili, Analysis of direct segregated boundary-domain integral equations for variable-coefficient mixed BVPs in exterior domains, Anal. Appl., 11 (2013), 1350006, 33 pp. doi: 10.1142/S0219530513500061.  Google Scholar

[7]

M. Costabel, Boundary integral operators on Lipschitz domains: Elementary results, SIAM J. Math. Anal., 19 (1988), 613-626.  doi: 10.1137/0519043.  Google Scholar

[8]

T. T. Dufera and S. E. Mikhailov, Boundary-domain integral equations for variable-coefficient Dirichlet BVP in 2D unbounded domain, in Analysis, Probability, Applications, and Computations (eds. Lindahl et al), Springer Nature, Switzerland AG, 2019. doi: 10.1007/978-3-030-04459-6_46.  Google Scholar

[9]

C. Fresneda-Portillo and S. E. Mikhailov, Analysis of boundary-domain integral equations to the mixed BVP for a compressible Stokes system with variable viscosity, Commun. Pure Appl. Anal., 18 (2019), 3059-3088.  doi: 10.3934/cpaa.2019137.  Google Scholar

[10]

J. Giroire, Étude de quelques problèmes aux limites extérieurs et résolution par équations intégrales, Thése de Doctorat d'État, Université Pierre-et-Marie-Curie (Paris VI), 1987. Google Scholar

[11]

J. Giroire and J. Nedelec, Numerical solution of an exterior Neumann problem using a double layer potential, Math. Comp., 32 (1978), 973-990.  doi: 10.2307/2006329.  Google Scholar

[12]

R. GuttM. KohrS. E. Mikhailov and W. L. Wendland, On the mixed problem for the semilinear Darcy-Forchheimer-Brinkman PDE system in Besov spaces on creased Lipschitz domains, Math. Methods in Appl. Sci., 40 (2017), 7780-7829.  doi: 10.1002/mma.4562.  Google Scholar

[13]

B. Hanouzet, Espaces de Sobolev avec Poids. Application au probleme de Dirichlet dans un demi espace, Rendiconti del Seminario Matematico della Universita di Padova, 46 (1971), 227-272.   Google Scholar

[14]

G. C. Hsiao and W. L. Wendland, Boundary Integral Equations, Springer, Berlin, 2008. doi: 10.1007/978-3-540-68545-6.  Google Scholar

[15]

M. Kohr, M. Lanza de Cristoforis, S. E. Mikhailov and W. L. Wendland, Integral potential method for transmission problem with Lipschitz interface in $\mathbb R^3$ for the Stokes and Darcy-Forchheimer-Brinkman PDE systems, Z. Angew. Math. Phys., 67 (2016), 116, 30pp. doi: 10.1007/s00033-016-0696-1.  Google Scholar

[16]

M. Kohr, S. E. Mikhailov and W. L. Wendland, Variational approach for layer potentials of the Stokes system with $L_{\infty}$ symmetrically elliptic coefficient tensor and applications to Stokes and Navier-Stokes boundary problems, arXiv: 2002.09990. Google Scholar

[17]

M. Kohr and W. L. Wendland, Variational boundary integral equations for the Stokes system, Appl. Anal., 85 (2006), 1343-1372.  doi: 10.1080/00036810600963961.  Google Scholar

[18]

M. Kohr and W. L. Wendland, Boundary value problems for the Brinkman system with $L_{\infty }$ coefficients in Lipschitz domains on compact Riemannian manifolds. A variational approach, J. Math. Pures Appl., 131 (2019), 17-63.  doi: 10.1016/j.matpur.2019.04.002.  Google Scholar

[19]

O. A. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Flow, Gordon & Breach, New York, 1969.  Google Scholar

[20]

J. L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications, Springer, Berlin, 1973.  Google Scholar

[21] W. McLean, Strongly Elliptic Systems and Boundary Integral Equations, Cambridge University Press, Cambridge, UK, 2000.   Google Scholar
[22]

S. E. Mikhailov, Traces, extensions and co-normal derivatives for elliptic systems on Lipschitz domains, J. Math. Anal. Appl., 378 (2011), 324-342.  doi: 10.1016/j.jmaa.2010.12.027.  Google Scholar

[23]

S. E. Mikhailov, Localized boundary-domain integral formulations for problems with variable coefficients, Eng. Anal. Bound. Elem., 26 (2002), 681-690.  doi: 10.1016/S0955-7997(02)00030-9.  Google Scholar

[24]

S. E. Mikhailov, Analysis of segregated boundary-domain integral equations for BVPs with non-smooth coefficient on Lipschitz domains, Bound. Value Probl., 87 (2018), 1-52.  doi: 10.1186/s13661-018-0992-0.  Google Scholar

[25]

S. E. Mikhailov and C. F. Portillo, BDIE system to the mixed BVP for the Stokes equations with variable viscosity, in Integral Methods in Science and Engineering: Theoretical and Computational Advances (eds. C. Constanda and A. Kirsh), Springer, Boston, 2015.  Google Scholar

[26]

S. E. Mikhailov and C. F. Portillo, A new family of boundary-domain integral equations for a mixed elliptic BVP with variable coefficient, in Proceedings of the 10th UK Conference on Boundary Integral Methods (ed. P. Harris), Brighton University Press, 2015. Google Scholar

[27]

S. E. Mikhailov and C. F. Portillo, BDIEs for the compressible Stokes system with variable viscosity mixed BVP in bounded domains, in Proceedings of the 11th UK Conference on Boundary Integral Methods (ed. D.J. Chappell), Nottingham Trent Univ., 2017. Google Scholar

[28]

I. Mitrea and M. Mitrea, The Poisson problem with mixed boundary conditions in Sobolev and Besov spaces in non-smooth domains, T. Am. Math. Soc., 359 (2007), 4143-4182. doi: 10.1090/S0002-9947-07-04146-3.  Google Scholar

[29]

J. Nedelec, Acoustic and Electromagnetic Equations, Springer-Verlag, New York, 2001. doi: 10.1007/978-1-4757-4393-7.  Google Scholar

[30]

J. Nedelec and J. Planchard, Une méthode variationnelle d'éléments finis pour la résolution numérique d'un problème extérieur dans $\mathbb{R}^{3}$, RAIRO, 7 (1973), 105-129.   Google Scholar

[31]

J. B. Neto, Inhomogeneous boundary value problems in a half space, Ann. Sc. Sup. Pisa, 19 (1965), 331-365.   Google Scholar

[32]

B. Reidinger and O. Steinbach, A symmetric boundary element method for the Stokes problem in multiple connected domains, Math. Meth. Appl. Sci., 26 (2003), 77-93.  doi: 10.1002/mma.347.  Google Scholar

[33]

O. Steinbach, Numerical Approximation Methods for Elliptic Boundary Value Problems, Springer, Berlin, 2007. doi: 10.1007/978-0-387-68805-3.  Google Scholar

[34]

R. Temam, Navier-Stokes Equations, AMS Chelsea Edition, American Mathematical Society, 2001. doi: 10.1090/chel/343.  Google Scholar

[35]

H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, North-Holland, Amsterdam, 1978.  Google Scholar

[36]

W. Varnhorn, The Stokes Equations, Akademie Verlag, Berlin, 1994.  Google Scholar

[37]

W. L. Wendland and J. Zhu, The boundary element method for three dimensional Stokes flow exterior to an open surface, Math. Comput. Model., 6 (1991), 19-42.  doi: 10.1016/0895-7177(91)90021-X.  Google Scholar

[1]

Carlos Fresneda-Portillo, Sergey E. Mikhailov. Analysis of Boundary-Domain Integral Equations to the mixed BVP for a compressible stokes system with variable viscosity. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3059-3088. doi: 10.3934/cpaa.2019137

[2]

Oleksandr Boichuk, Victor Feruk. Boundary-value problems for weakly singular integral equations. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021094

[3]

Jihoon Lee, Nguyen Thanh Nguyen. Gromov-Hausdorff stability of reaction diffusion equations with Robin boundary conditions under perturbations of the domain and equation. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1263-1296. doi: 10.3934/cpaa.2021020

[4]

Luigi C. Berselli, Jishan Fan. Logarithmic and improved regularity criteria for the 3D nematic liquid crystals models, Boussinesq system, and MHD equations in a bounded domain. Communications on Pure & Applied Analysis, 2015, 14 (2) : 637-655. doi: 10.3934/cpaa.2015.14.637

[5]

Joel Fotso Tachago, Giuliano Gargiulo, Hubert Nnang, Elvira Zappale. Multiscale homogenization of integral convex functionals in Orlicz Sobolev setting. Evolution Equations & Control Theory, 2021, 10 (2) : 297-320. doi: 10.3934/eect.2020067

[6]

Tomasz Kosmala, Markus Riedle. Variational solutions of stochastic partial differential equations with cylindrical Lévy noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2879-2898. doi: 10.3934/dcdsb.2020209

[7]

Qi Lü, Xu Zhang. A concise introduction to control theory for stochastic partial differential equations. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021020

[8]

Nizami A. Gasilov. Solving a system of linear differential equations with interval coefficients. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2739-2747. doi: 10.3934/dcdsb.2020203

[9]

Guodong Wang, Bijun Zuo. Energy equality for weak solutions to the 3D magnetohydrodynamic equations in a bounded domain. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021078

[10]

Amru Hussein, Martin Saal, Marc Wrona. Primitive equations with horizontal viscosity: The initial value and The time-periodic problem for physical boundary conditions. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3063-3092. doi: 10.3934/dcds.2020398

[11]

Saima Rashid, Fahd Jarad, Zakia Hammouch. Some new bounds analogous to generalized proportional fractional integral operator with respect to another function. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021020

[12]

Beom-Seok Han, Kyeong-Hun Kim, Daehan Park. A weighted Sobolev space theory for the diffusion-wave equations with time-fractional derivatives on $ C^{1} $ domains. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3415-3445. doi: 10.3934/dcds.2021002

[13]

Nhu N. Nguyen, George Yin. Stochastic partial differential equation models for spatially dependent predator-prey equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 117-139. doi: 10.3934/dcdsb.2019175

[14]

Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213

[15]

Dariusz Idczak. A Gronwall lemma for functions of two variables and its application to partial differential equations of fractional order. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021019

[16]

Ankit Kumar, Kamal Jeet, Ramesh Kumar Vats. Controllability of Hilfer fractional integro-differential equations of Sobolev-type with a nonlocal condition in a Banach space. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021016

[17]

Ademir Fernando Pazoto, Lionel Rosier. Uniform stabilization in weighted Sobolev spaces for the KdV equation posed on the half-line. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1511-1535. doi: 10.3934/dcdsb.2010.14.1511

[18]

Francesca Bucci. Improved boundary regularity for a Stokes-Lamé system. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021018

[19]

Cheng Wang. Convergence analysis of Fourier pseudo-spectral schemes for three-dimensional incompressible Navier-Stokes equations. Electronic Research Archive, , () : -. doi: 10.3934/era.2021019

[20]

Teddy Pichard. A moment closure based on a projection on the boundary of the realizability domain: 1D case. Kinetic & Related Models, 2020, 13 (6) : 1243-1280. doi: 10.3934/krm.2020045

2019 Impact Factor: 1.105

Article outline

[Back to Top]