-
Previous Article
The BSE concepts for vector-valued Lipschitz algebras
- CPAA Home
- This Issue
-
Next Article
Boundary-Domain Integral Equations equivalent to an exterior mixed BVP for the variable-viscosity compressible Stokes PDEs
Approximation of a stochastic two-phase flow model by a splitting-up method
1. | Department of Mathematics and Computer Science, University of Dschang, P. O. BOX 67, Dschang, Cameroon |
2. | Department of Mathematics, Florida International University, MMC, Miami, Florida 33199, USA |
In this paper, we consider a stochastic Allen-Cahn Navier-Stokes system in a bounded domain of $ \mathbb{R}^d, $ $ d = 2,3 $. The system models the evolution of an incompressible isothermal mixture of binary fluids under the influence of stochastic external forces. We prove the existence of a global weak martingale solution. The proof is based on splitting-up method as well as some compactness method.
References:
[1] |
D. C. Antonopoulou, G. Karali and A. Millet,
Existence and regularity of solution for a stochastic Cahn-Hilliard/Allen-Cahn equation with unbounded noise diffusion, J. Differ. Equ., 260 (2016), 2383-2417.
doi: 10.1016/j.jde.2015.10.004. |
[2] |
A. Bensoussan, Some existence results for stochastic partial differential equations. In Stochastic Partial Differential Equations and Applications, Pitman Res.Notes, Math. Ser., 268, Longman Scientific and Technical, Harlow, UK, (1992), 37-53. |
[3] |
A. Bensoussan, Stochastic Navier-Stokes equations, Acta Appl. Math., 38, 267-304.
doi: 10.1007/BF00996149. |
[4] |
A. Bensoussan, R. Glowinski and A. Rascanu,
Approximation of some stochastic differential equations by the splitting-up method, Appl. Math. Optim., 25 (1992), 81-106.
doi: 10.1007/BF01184157. |
[5] |
P. Billingsley, Convergence of Probability Measures, 2nd edition, Wiley Series in Probability and Statistics: Probability and Statistics, John Wiley & Sons, Inc., New York, 1999.
doi: 10.1002/9780470316962. |
[6] |
Z. Brzeźniak, B. Goldys and T. Jegaraj,
Weak solutions of a stochastic Landau-Lifshitz-Gilbert equation, Appl. Math. Res. Express., 1 (2013), 1-33.
doi: 10.1093/amrx/abs009. |
[7] |
G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions: Second Edition, Encyclopedia of Mathematics and its Applications, Cambridge University Press, 2014.
doi: 10.1017/CBO9781107295513.![]() ![]() |
[8] |
S. Dai and Q. Du,
Weak Solutions for the Cahn-Hilliard Equation with Degenerate Mobility, Arch. Rational Mech. Anal., 219 (2016), 1161-1184.
doi: 10.1007/s00205-015-0918-2. |
[9] |
G. Deugoue and M. Sango,
Convergence for a Splitting-Up Scheme for the 3D Stochastic Navier-Stokes-$\alpha$ Model, Stoch. Anal. Appl., 32 (2014), 253-279.
doi: 10.1080/07362994.2013.862359. |
[10] |
L. C. Evans, Partial Differential Equations, Graduate studies in Mathematics, American Mathematical society, 1997. |
[11] |
X. Feng, Y. He and C. Liu,
Analysis of finite element approximations of a phase field model for two-phase, Fluids. Math. Comput., 76 (2007), 539-571.
doi: 10.1090/S0025-5718-06-01915-6. |
[12] |
F. Flandoli and D. Gatarek,
Martingale and stationary solutions for stochastic Navier-Stokes equations, Probab. Theory Relat. Fields, 102 (1995), 367-391.
doi: 10.1007/BF01192467. |
[13] |
G. B. Folland, Real analysis. Pure and Applied Mathematics, John Wiley and Sons Inc, New York, 1999. |
[14] |
C. G. Gal and M. Grasselli,
behavior for a model of homogeneous incompressible two-phase flows, Discrete Contin. Dyn. S., 28 (2010), 1-39.
doi: 10.3934/dcds.2010.28.1. |
[15] |
N. Y. Goncharuk and P. Kotelenez,
Fractional step method for stochastic evolution equations, Stochastic Processes Appl., 73 (1998), 1-45.
doi: 10.1016/S0304-4149(97)00079-3. |
[16] |
L. Goudenège and L. Manca, Stochastic phase field $\alpha$-Navier-Stokes vesicle-fluid interaction model, arXiv: 1901.01335. Google Scholar |
[17] |
W. Grecksch, A splitting up method for nonlinear parabolic Ito equations, preprint, Martin-Luther-Universitat, Halle-Wittenberg, 1996. Google Scholar |
[18] |
I. Gyöngy and N. Krylov,
On the splitting-up method and stochastic partial differential equations, Ann. Probab., 31 (2003), 564-591.
doi: 10.1214/aop/1048516528. |
[19] |
C. Liu and J. Shen,
A phase field model for the mixture of two incompressible fluids and its approximations by Fourier-spectral method, Phys. D, 179 (2003), 211-228.
doi: 10.1016/S0167-2789(03)00030-7. |
[20] |
N. Nagase,
Remarks on nonlinear stochastic partial differential equations: an application of the splitting-up method, SIAM J. Control Optim., 33 (1995), 1716-1730.
doi: 10.1137/S036301299324618X. |
[21] |
E. Pardoux, Equations and Dérivées Partielles Stochastiques Non Linéaires Monotones, Thèse Université Paris XI, 1975. Google Scholar |
[22] |
K. R. Parthasarathy, Probability Measures on Metric Spaces, Probability and Mathematical Statistics, Academic Press, Inc., New York-London, 1967.
![]() |
[23] |
D. Revuz and M. Yor, Continuous martingales and Brownian motion, 3rd edition, in Grundlehren der Mathematischen Wissenschaften, Springer-Verlag, Berlin, 1999.
doi: 10.1007/978-3-662-06400-9. |
[24] |
M. Sango,
Splitting-up scheme for nonlinear stochastic hyperbolic equations, Forum Math., 25 (2013), 931-965.
doi: 10.1515/form.2011.138. |
[25] |
T. Tachim Medjo,
On the convergence of a stochastic 3D globally modified two-phase flow model, Discret. Contin. Dyn. S., 39 (2019), 395-430.
doi: 10.3934/dcds.2019016. |
[26] |
T. Tachim Medjo, On the existence and uniqueness of solution to a stochastic 2D Allen-Cahn-Navier-Stokes model, Stoch. Dynam., 19 (2018), 28 pp.
doi: 10.1142/S0219493719500072. |
[27] |
T. Tachim Medjo,
A two-phase flow model with delays, Discrete Cont. Dyn-B, 22 (2017), 1-17.
doi: 10.3934/dcdsb.2017137. |
[28] |
T. Tachim Medjo,
Pullback $\mathbb{V}$-attractor of a three dimensional globally modified two-phase flow model, Discrete Cont. Dyn. S., 38 (2018), 2141-2169.
doi: 10.3934/dcds.2018088. |
[29] |
T. Tachim Medjo, C. Tone and F. Tone,
Long-time dynamics of a regularized family of models for homogeneous incompressible two-phase flows, Asymptotic Anal., 94 (2015), 125-160.
doi: 10.3233/ASY-151309. |
show all references
References:
[1] |
D. C. Antonopoulou, G. Karali and A. Millet,
Existence and regularity of solution for a stochastic Cahn-Hilliard/Allen-Cahn equation with unbounded noise diffusion, J. Differ. Equ., 260 (2016), 2383-2417.
doi: 10.1016/j.jde.2015.10.004. |
[2] |
A. Bensoussan, Some existence results for stochastic partial differential equations. In Stochastic Partial Differential Equations and Applications, Pitman Res.Notes, Math. Ser., 268, Longman Scientific and Technical, Harlow, UK, (1992), 37-53. |
[3] |
A. Bensoussan, Stochastic Navier-Stokes equations, Acta Appl. Math., 38, 267-304.
doi: 10.1007/BF00996149. |
[4] |
A. Bensoussan, R. Glowinski and A. Rascanu,
Approximation of some stochastic differential equations by the splitting-up method, Appl. Math. Optim., 25 (1992), 81-106.
doi: 10.1007/BF01184157. |
[5] |
P. Billingsley, Convergence of Probability Measures, 2nd edition, Wiley Series in Probability and Statistics: Probability and Statistics, John Wiley & Sons, Inc., New York, 1999.
doi: 10.1002/9780470316962. |
[6] |
Z. Brzeźniak, B. Goldys and T. Jegaraj,
Weak solutions of a stochastic Landau-Lifshitz-Gilbert equation, Appl. Math. Res. Express., 1 (2013), 1-33.
doi: 10.1093/amrx/abs009. |
[7] |
G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions: Second Edition, Encyclopedia of Mathematics and its Applications, Cambridge University Press, 2014.
doi: 10.1017/CBO9781107295513.![]() ![]() |
[8] |
S. Dai and Q. Du,
Weak Solutions for the Cahn-Hilliard Equation with Degenerate Mobility, Arch. Rational Mech. Anal., 219 (2016), 1161-1184.
doi: 10.1007/s00205-015-0918-2. |
[9] |
G. Deugoue and M. Sango,
Convergence for a Splitting-Up Scheme for the 3D Stochastic Navier-Stokes-$\alpha$ Model, Stoch. Anal. Appl., 32 (2014), 253-279.
doi: 10.1080/07362994.2013.862359. |
[10] |
L. C. Evans, Partial Differential Equations, Graduate studies in Mathematics, American Mathematical society, 1997. |
[11] |
X. Feng, Y. He and C. Liu,
Analysis of finite element approximations of a phase field model for two-phase, Fluids. Math. Comput., 76 (2007), 539-571.
doi: 10.1090/S0025-5718-06-01915-6. |
[12] |
F. Flandoli and D. Gatarek,
Martingale and stationary solutions for stochastic Navier-Stokes equations, Probab. Theory Relat. Fields, 102 (1995), 367-391.
doi: 10.1007/BF01192467. |
[13] |
G. B. Folland, Real analysis. Pure and Applied Mathematics, John Wiley and Sons Inc, New York, 1999. |
[14] |
C. G. Gal and M. Grasselli,
behavior for a model of homogeneous incompressible two-phase flows, Discrete Contin. Dyn. S., 28 (2010), 1-39.
doi: 10.3934/dcds.2010.28.1. |
[15] |
N. Y. Goncharuk and P. Kotelenez,
Fractional step method for stochastic evolution equations, Stochastic Processes Appl., 73 (1998), 1-45.
doi: 10.1016/S0304-4149(97)00079-3. |
[16] |
L. Goudenège and L. Manca, Stochastic phase field $\alpha$-Navier-Stokes vesicle-fluid interaction model, arXiv: 1901.01335. Google Scholar |
[17] |
W. Grecksch, A splitting up method for nonlinear parabolic Ito equations, preprint, Martin-Luther-Universitat, Halle-Wittenberg, 1996. Google Scholar |
[18] |
I. Gyöngy and N. Krylov,
On the splitting-up method and stochastic partial differential equations, Ann. Probab., 31 (2003), 564-591.
doi: 10.1214/aop/1048516528. |
[19] |
C. Liu and J. Shen,
A phase field model for the mixture of two incompressible fluids and its approximations by Fourier-spectral method, Phys. D, 179 (2003), 211-228.
doi: 10.1016/S0167-2789(03)00030-7. |
[20] |
N. Nagase,
Remarks on nonlinear stochastic partial differential equations: an application of the splitting-up method, SIAM J. Control Optim., 33 (1995), 1716-1730.
doi: 10.1137/S036301299324618X. |
[21] |
E. Pardoux, Equations and Dérivées Partielles Stochastiques Non Linéaires Monotones, Thèse Université Paris XI, 1975. Google Scholar |
[22] |
K. R. Parthasarathy, Probability Measures on Metric Spaces, Probability and Mathematical Statistics, Academic Press, Inc., New York-London, 1967.
![]() |
[23] |
D. Revuz and M. Yor, Continuous martingales and Brownian motion, 3rd edition, in Grundlehren der Mathematischen Wissenschaften, Springer-Verlag, Berlin, 1999.
doi: 10.1007/978-3-662-06400-9. |
[24] |
M. Sango,
Splitting-up scheme for nonlinear stochastic hyperbolic equations, Forum Math., 25 (2013), 931-965.
doi: 10.1515/form.2011.138. |
[25] |
T. Tachim Medjo,
On the convergence of a stochastic 3D globally modified two-phase flow model, Discret. Contin. Dyn. S., 39 (2019), 395-430.
doi: 10.3934/dcds.2019016. |
[26] |
T. Tachim Medjo, On the existence and uniqueness of solution to a stochastic 2D Allen-Cahn-Navier-Stokes model, Stoch. Dynam., 19 (2018), 28 pp.
doi: 10.1142/S0219493719500072. |
[27] |
T. Tachim Medjo,
A two-phase flow model with delays, Discrete Cont. Dyn-B, 22 (2017), 1-17.
doi: 10.3934/dcdsb.2017137. |
[28] |
T. Tachim Medjo,
Pullback $\mathbb{V}$-attractor of a three dimensional globally modified two-phase flow model, Discrete Cont. Dyn. S., 38 (2018), 2141-2169.
doi: 10.3934/dcds.2018088. |
[29] |
T. Tachim Medjo, C. Tone and F. Tone,
Long-time dynamics of a regularized family of models for homogeneous incompressible two-phase flows, Asymptotic Anal., 94 (2015), 125-160.
doi: 10.3233/ASY-151309. |
[1] |
Thomas Y. Hou, Ruo Li. Nonexistence of locally self-similar blow-up for the 3D incompressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems, 2007, 18 (4) : 637-642. doi: 10.3934/dcds.2007.18.637 |
[2] |
Murat Uzunca, Ayşe Sarıaydın-Filibelioǧlu. Adaptive discontinuous galerkin finite elements for advective Allen-Cahn equation. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 269-281. doi: 10.3934/naco.2020025 |
[3] |
Yueqiang Shang, Qihui Zhang. A subgrid stabilizing postprocessed mixed finite element method for the time-dependent Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3119-3142. doi: 10.3934/dcdsb.2020222 |
[4] |
Francis Hounkpe, Gregory Seregin. An approximation of forward self-similar solutions to the 3D Navier-Stokes system. Discrete & Continuous Dynamical Systems, 2021 doi: 10.3934/dcds.2021059 |
[5] |
Mia Jukić, Hermen Jan Hupkes. Dynamics of curved travelling fronts for the discrete Allen-Cahn equation on a two-dimensional lattice. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3163-3209. doi: 10.3934/dcds.2020402 |
[6] |
Daoyuan Fang, Ting Zhang. Compressible Navier-Stokes equations with vacuum state in one dimension. Communications on Pure & Applied Analysis, 2004, 3 (4) : 675-694. doi: 10.3934/cpaa.2004.3.675 |
[7] |
Mirela Kohr, Sergey E. Mikhailov, Wolfgang L. Wendland. Dirichlet and transmission problems for anisotropic stokes and Navier-Stokes systems with L∞ tensor coefficient under relaxed ellipticity condition. Discrete & Continuous Dynamical Systems, 2021 doi: 10.3934/dcds.2021042 |
[8] |
Tomasz Kosmala, Markus Riedle. Variational solutions of stochastic partial differential equations with cylindrical Lévy noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2879-2898. doi: 10.3934/dcdsb.2020209 |
[9] |
Cheng Wang. Convergence analysis of Fourier pseudo-spectral schemes for three-dimensional incompressible Navier-Stokes equations. Electronic Research Archive, , () : -. doi: 10.3934/era.2021019 |
[10] |
Xin-Guang Yang, Rong-Nian Wang, Xingjie Yan, Alain Miranville. Dynamics of the 2D Navier-Stokes equations with sublinear operators in Lipschitz-like domains. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3343-3366. doi: 10.3934/dcds.2020408 |
[11] |
Ling-Bing He, Li Xu. On the compressible Navier-Stokes equations in the whole space: From non-isentropic flow to isentropic flow. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3489-3530. doi: 10.3934/dcds.2021005 |
[12] |
Xin Zhong. Global strong solution and exponential decay for nonhomogeneous Navier-Stokes and magnetohydrodynamic equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3563-3578. doi: 10.3934/dcdsb.2020246 |
[13] |
Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271 |
[14] |
Alexander Tolstonogov. BV solutions of a convex sweeping process with a composed perturbation. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021012 |
[15] |
Petra Csomós, Hermann Mena. Fourier-splitting method for solving hyperbolic LQR problems. Numerical Algebra, Control & Optimization, 2018, 8 (1) : 17-46. doi: 10.3934/naco.2018002 |
[16] |
Woocheol Choi, Youngwoo Koh. On the splitting method for the nonlinear Schrödinger equation with initial data in $ H^1 $. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3837-3867. doi: 10.3934/dcds.2021019 |
[17] |
Amanda E. Diegel. A C0 interior penalty method for the Cahn-Hilliard equation. Electronic Research Archive, , () : -. doi: 10.3934/era.2021030 |
[18] |
Jinyi Sun, Zunwei Fu, Yue Yin, Minghua Yang. Global existence and Gevrey regularity to the Navier-Stokes-Nernst-Planck-Poisson system in critical Besov-Morrey spaces. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3409-3425. doi: 10.3934/dcdsb.2020237 |
[19] |
Huancheng Yao, Haiyan Yin, Changjiang Zhu. Stability of rarefaction wave for the compressible non-isentropic Navier-Stokes-Maxwell equations. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1297-1317. doi: 10.3934/cpaa.2021021 |
[20] |
Yaonan Ma, Li-Zhi Liao. The Glowinski–Le Tallec splitting method revisited: A general convergence and convergence rate analysis. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1681-1711. doi: 10.3934/jimo.2020040 |
2019 Impact Factor: 1.105
Tools
Article outline
[Back to Top]