doi: 10.3934/cpaa.2021013

Kuramoto order parameters and phase concentration for the Kuramoto-Sakaguchi equation with frustration

1. 

Department of Mathematical Sciences and Research Institute of Mathematics, Seoul National University, Seoul 08826 and Korea Institute for Advanced Study, Hoegiro 87, Seoul, 130-722, Republic of Korea

2. 

Center for Scientific Computation and Mathematical Modeling, University of Maryland, College Park, MD 20742, USA

3. 

Stochastic Analysis and Application Research Center, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea

* Corresponding author

Dedicated to the celebration of the 80th birthday of Prof. Shuxing Chen

Received  June 2020 Revised  December 2020 Published  February 2021

Fund Project: The work of S. Y. Ha was supported by National Research Foundation of Korea(NRF-2020R1A2C3A01003881), and the work of Y. Zhang was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIT)(NRF-2019R1A5A1028324)

We study phase concentration for the Kuramoto-Sakaguchi(K-S) equation with frustration via detailed estimates on the dynamics of order parameters. The Kuramoto order parameters measure the overall degree of phase concentrations. When the coupling strength is sufficiently large and the size of frustration parameter is sufficiently small, we show that the amplitude order parameter has a positive lower bound uniformly in time, and we also show that the total mass concentrates on the translated phase order parameter by a frustration parameter asymptotically, whereas the mass in the region around the antipodal point decays to zero exponentially fast.

Citation: Seung-Yeal Ha, Javier Morales, Yinglong Zhang. Kuramoto order parameters and phase concentration for the Kuramoto-Sakaguchi equation with frustration. Communications on Pure & Applied Analysis, doi: 10.3934/cpaa.2021013
References:
[1]

J. A. AcebrónL. L. BonillaC. J. P. Pérez VicenteF. Ritort and R. Spigler, The Kuramoto model: A simple paradigm for synchronization phenomena, Rev. Modern. Phys., 77 (2005), 137-185.  doi: 10.1103/RevModPhys.77.137.  Google Scholar

[2]

D. AmadoriS. Y. Ha and J. Park, On the global well-posedness of BV weak solutions for the Kuramoto-akaguchi equation, J. Differ. Equ., 262 (2017), 978-1022.  doi: 10.1016/j.jde.2016.10.004.  Google Scholar

[3]

D. BenedettoE. Caglioti and U. Montemagno, On the complete phase synchronization for the Kuramoto model in the mean-field limit, Commun. Math. Sci., 13 (2015), 1775-1786.  doi: 10.4310/CMS.2015.v13.n7.a6.  Google Scholar

[4]

D. BenedettoE. Caglioti and U. Montemagno, Exponential dephasing of oscillators in the kinetic Kuramoto model, J. Stat. Phys., 162 (2016), 813-823.  doi: 10.1007/s10955-015-1426-3.  Google Scholar

[5]

M. Brede and A. C. Kalloniatis, Frustration tuning and perfect phase synchronization in the Kuramoto-Sakaguchi model, Phys. Rev. E, 93 (2916), 062315, 13 pp. doi: 10.1103/PhysRevE.93.062315.  Google Scholar

[6]

J. A. CarrilloY. P. ChoiS. Y. HaM. J. Kang and Y. Kim, Contractivity of transport distances for the kinetic Kuramoto equation, J. Stat. Phys., 156 (2014), 395-415.  doi: 10.1007/s10955-014-1005-z.  Google Scholar

[7]

Y. ChoiS. Y. HaS. Jung and Y. Kim, Asymptotic formation and orbital stability of phase-locked states for the Kuramoto model, Physica D, 241 (2012), 735-754.  doi: 10.1016/j.physd.2011.11.011.  Google Scholar

[8]

H. Chiba, Continuous limit of the moments system for the globally coupled phase oscillators, Discrete Contin. Dyn. Syst., 33 (2013), 1891-1903.  doi: 10.3934/dcds.2013.33.1891.  Google Scholar

[9]

N. Chopra and M. W. Spong, On exponential synchronization of Kuramoto oscillators, IEEE Trans. Autom. Control, 54 (2009), 353-357.  doi: 10.1109/TAC.2008.2007884.  Google Scholar

[10]

H. Daido, Quasientrainment and slow relaxation in a population of oscillators with random and frustrated interactions, Phys. Rev. Lett., 68 (1992), 1073-1076.   Google Scholar

[11]

F. De Smet and D. Aeyels, Partial entrainment in the finite Kuramoto-Sakaguchi model, Physica D, 234 (2007), 81-89.  doi: 10.1016/j.physd.2007.06.025.  Google Scholar

[12]

H. DietertB. Fernandez and D. Gérard-Varet, Landau damping to partially locked states in the Kuramoto model, Commun. Pure Appl. Math., 71 (2018), 953-993.  doi: 10.1002/cpa.21741.  Google Scholar

[13]

J. G. Dong and X. Xue, Synchronization analysis of Kuramoto oscillators, Commun. Math. Sci., 11 (2013), 465-480.  doi: 10.4310/CMS.2013.v11.n2.a7.  Google Scholar

[14]

F. Dörfler and F. Bullo, Synchronization and transient stability in power networks and nonuniform Kuramoto oscillators, SIAM J. Control Optim., 50 (2012), 1616-1642.  doi: 10.1137/110851584.  Google Scholar

[15]

F. Dorfler and F. Bullo, On the critical coupling for Kuramoto oscillators, SIAM J. Appl. Dyn. Syst., 10 (2011), 1070-1099.  doi: 10.1137/10081530X.  Google Scholar

[16]

B. FernandezD. Grard-Varet and G. Giacomin, Landau damping in the Kuramoto model, Ann. Henri Poincaré, 17 (2016), 1793-1823.  doi: 10.1007/s00023-015-0450-9.  Google Scholar

[17]

S. Y. Ha, D. Kim, J. Lee and Y. Zhang, Remarks on the stability properties of the Kuramoto-Sakaguchi-Fokker-Planck equation with frustration, Z. Angew. Math. Phys., 69 (2018), 25 pp. doi: 10.1007/s00033-018-0984-z.  Google Scholar

[18]

S. Y. HaH. K. Kim and J. Park, Remarks on the complete synchronization for the Kuramoto model with frustrations, Anal. Appl., 16 (2018), 525-563.  doi: 10.1142/S0219530517500130.  Google Scholar

[19]

S. Y. HaH. Kim and S. Ryoo, Emergence of phase-locked states for the Kuramoto model in a large coupling regime, Commun. Math. Sci., 14 (2016), 1073-1091.  doi: 10.4310/CMS.2016.v14.n4.a10.  Google Scholar

[20]

S. Y. HaY. Kim and Z. Li, Large-time dynamics of Kuramoto oscillators under the effects of inertia and frustration, SIAM J. Appl. Dyn. Syst., 13 (2014), 466-492.  doi: 10.1137/130926559.  Google Scholar

[21]

S. Y. HaY. Kim and Z. Li, Asymptotic synchronous behavior of Kuramoto type models with frustrations, Netw. Heterog. Media, 9 (2014), 33-64.  doi: 10.3934/nhm.2014.9.33.  Google Scholar

[22]

S. Y. Ha, Y. H. Kim, J. Morales and J. Park, Emergence of phase concentration for the Kuramoto-Sakaguchi equation, Phys. D, 401 (2020), 24 pp. doi: 10.1016/j.physd.2019.132154.  Google Scholar

[23]

S. Y. HaD. Ko and Y. Zhang, Emergence of Phase-Locking in the Kuramoto Model for Identical Oscillators with Frustration, SIAM J. Appl. Dyn. Syst., 17 (2018), 581-625.  doi: 10.1137/17M1112959.  Google Scholar

[24]

S. Y. HaJ. Lee and Y. Zhang, Robustness in the instability of the incoherent state for the Kuramoto-Sakaguchi-Fokker-Planck equation with frustration, Quart. Appl. Math., 77 (2019), 631-654.  doi: 10.1090/qam/1533.  Google Scholar

[25]

S. Y. HaH. Park and Y. Zhang, Nonlinear stability of stationary solutions to the Kuramoto-Sakaguchi equation with frustration, Netw. Heterog. Media, 15 (2020), 427-461.  doi: 10.3934/nhm.2020026.  Google Scholar

[26]

S. Y. Ha and Q. Xiao, Remarks on the nonlinear stability of the Kuramoto-Sakaguchi equation, J. Differential Equations, 259 (2015), 2430-2457.  doi: 10.1016/j.jde.2015.03.038.  Google Scholar

[27]

S. Y. Ha and Q. Xiao, Nonlinear instability of the incoherent state for the Kuramoto-Sakaguchi-Fokker-Plank equation, J. Stat. Phys., 160 (2015), 477-496.  doi: 10.1007/s10955-015-1270-5.  Google Scholar

[28]

A. JadbabaieN. Motee and M. Barahona, On the stability of the Kuramoto model of coupled nonlinear oscillators, Proc. American Control Conf., 5 (2004), 4296-4301.   Google Scholar

[29]

Y. Kuramoto, Chemical Oscillations, Waves and Turbulence, Springer-Verlag, Berlin, 1984. doi: 10.1007/978-3-642-69689-3.  Google Scholar

[30]

Y. Kuramoto, International symposium on mathematical problems in mathematical physics, Lecture notes in theoretical physics, 30 (1975), 420.  Google Scholar

[31]

C. Lancellotti, On the Vlasov limit for systems of nonlinearly coupled oscillators without noise, Transport Theory Statist. Phys., 34 (2005), 523-535.  doi: 10.1080/00411450508951152.  Google Scholar

[32]

Z. Levnajić, Emergent multistability and frustration in phase-repulsive networks of oscillators, Phys. Rev. E, 84 (2011), 016231. Google Scholar

[33]

Z. Li and S. Y. Ha, Uniqueness and well-ordering of emergent phase-locked states for the Kuramoto model with frustration and inertia, Math. Models Methods Appl. Sci., 26 (2016), 357-382.  doi: 10.1142/S0218202516400054.  Google Scholar

[34]

R. E. Mirollo and S. H. Strogatz, The spectrum of the partially locked state for the Kuramoto model, J. Nonlinear Sci., 17 (2007), 309-347.  doi: 10.1007/s00332-006-0806-x.  Google Scholar

[35]

J. Morales and D. Poyato, On the trend to global equilibrium for Kuramoto Oscillators, arXiv: 1908.07657v1 Google Scholar

[36]

E. Oh, C. Choi, B. Kahng and D. Kim, Modular synchronization in complex networks with a gauge Kuramoto model, EPL, 83 (2008), 68003. Google Scholar

[37]

K. ParkS. W. Rhee and M. Y. Choi, Glass synchronization in the network of oscillators with random phase shift, Phys. Rev. E, 57 (1998), 5030-5035.   Google Scholar

[38] A. PikovskyM. Rosenblum and J. Kurths, Synchronization: A universal concept in nonlinear sciences, Cambridge University Press, Cambridge, 2001.  doi: 10.1017/CBO9780511755743.  Google Scholar
[39]

H. Sakaguchi and Y. Kuramoto, A soluble active rotator model showing phase transitions via mutual entrainment, Progr. Theoret. Phys., 76 (1986), 576-581.  doi: 10.1143/PTP.76.576.  Google Scholar

[40]

S. H. Strogatz, From Kuramoto to Crawford: exploring the onset of synchronization in populations of coupled oscillators, Physica D, 143 (2000), 1-20.  doi: 10.1016/S0167-2789(00)00094-4.  Google Scholar

[41]

A. T. Winfree, Biological rhythms and the behavior of populations of coupled oscillators, J. Theor. Biol., 16 (1967), 15-42.   Google Scholar

[42]

A. T. Winfree, The Geometry of Biological Time, Springer, New York, 1980.  Google Scholar

[43]

Z. G. Zheng, Frustration effect on synchronization and chaos in coupled oscillators, Chin. Phys. Soc., 10 (2001), 703-707.   Google Scholar

show all references

References:
[1]

J. A. AcebrónL. L. BonillaC. J. P. Pérez VicenteF. Ritort and R. Spigler, The Kuramoto model: A simple paradigm for synchronization phenomena, Rev. Modern. Phys., 77 (2005), 137-185.  doi: 10.1103/RevModPhys.77.137.  Google Scholar

[2]

D. AmadoriS. Y. Ha and J. Park, On the global well-posedness of BV weak solutions for the Kuramoto-akaguchi equation, J. Differ. Equ., 262 (2017), 978-1022.  doi: 10.1016/j.jde.2016.10.004.  Google Scholar

[3]

D. BenedettoE. Caglioti and U. Montemagno, On the complete phase synchronization for the Kuramoto model in the mean-field limit, Commun. Math. Sci., 13 (2015), 1775-1786.  doi: 10.4310/CMS.2015.v13.n7.a6.  Google Scholar

[4]

D. BenedettoE. Caglioti and U. Montemagno, Exponential dephasing of oscillators in the kinetic Kuramoto model, J. Stat. Phys., 162 (2016), 813-823.  doi: 10.1007/s10955-015-1426-3.  Google Scholar

[5]

M. Brede and A. C. Kalloniatis, Frustration tuning and perfect phase synchronization in the Kuramoto-Sakaguchi model, Phys. Rev. E, 93 (2916), 062315, 13 pp. doi: 10.1103/PhysRevE.93.062315.  Google Scholar

[6]

J. A. CarrilloY. P. ChoiS. Y. HaM. J. Kang and Y. Kim, Contractivity of transport distances for the kinetic Kuramoto equation, J. Stat. Phys., 156 (2014), 395-415.  doi: 10.1007/s10955-014-1005-z.  Google Scholar

[7]

Y. ChoiS. Y. HaS. Jung and Y. Kim, Asymptotic formation and orbital stability of phase-locked states for the Kuramoto model, Physica D, 241 (2012), 735-754.  doi: 10.1016/j.physd.2011.11.011.  Google Scholar

[8]

H. Chiba, Continuous limit of the moments system for the globally coupled phase oscillators, Discrete Contin. Dyn. Syst., 33 (2013), 1891-1903.  doi: 10.3934/dcds.2013.33.1891.  Google Scholar

[9]

N. Chopra and M. W. Spong, On exponential synchronization of Kuramoto oscillators, IEEE Trans. Autom. Control, 54 (2009), 353-357.  doi: 10.1109/TAC.2008.2007884.  Google Scholar

[10]

H. Daido, Quasientrainment and slow relaxation in a population of oscillators with random and frustrated interactions, Phys. Rev. Lett., 68 (1992), 1073-1076.   Google Scholar

[11]

F. De Smet and D. Aeyels, Partial entrainment in the finite Kuramoto-Sakaguchi model, Physica D, 234 (2007), 81-89.  doi: 10.1016/j.physd.2007.06.025.  Google Scholar

[12]

H. DietertB. Fernandez and D. Gérard-Varet, Landau damping to partially locked states in the Kuramoto model, Commun. Pure Appl. Math., 71 (2018), 953-993.  doi: 10.1002/cpa.21741.  Google Scholar

[13]

J. G. Dong and X. Xue, Synchronization analysis of Kuramoto oscillators, Commun. Math. Sci., 11 (2013), 465-480.  doi: 10.4310/CMS.2013.v11.n2.a7.  Google Scholar

[14]

F. Dörfler and F. Bullo, Synchronization and transient stability in power networks and nonuniform Kuramoto oscillators, SIAM J. Control Optim., 50 (2012), 1616-1642.  doi: 10.1137/110851584.  Google Scholar

[15]

F. Dorfler and F. Bullo, On the critical coupling for Kuramoto oscillators, SIAM J. Appl. Dyn. Syst., 10 (2011), 1070-1099.  doi: 10.1137/10081530X.  Google Scholar

[16]

B. FernandezD. Grard-Varet and G. Giacomin, Landau damping in the Kuramoto model, Ann. Henri Poincaré, 17 (2016), 1793-1823.  doi: 10.1007/s00023-015-0450-9.  Google Scholar

[17]

S. Y. Ha, D. Kim, J. Lee and Y. Zhang, Remarks on the stability properties of the Kuramoto-Sakaguchi-Fokker-Planck equation with frustration, Z. Angew. Math. Phys., 69 (2018), 25 pp. doi: 10.1007/s00033-018-0984-z.  Google Scholar

[18]

S. Y. HaH. K. Kim and J. Park, Remarks on the complete synchronization for the Kuramoto model with frustrations, Anal. Appl., 16 (2018), 525-563.  doi: 10.1142/S0219530517500130.  Google Scholar

[19]

S. Y. HaH. Kim and S. Ryoo, Emergence of phase-locked states for the Kuramoto model in a large coupling regime, Commun. Math. Sci., 14 (2016), 1073-1091.  doi: 10.4310/CMS.2016.v14.n4.a10.  Google Scholar

[20]

S. Y. HaY. Kim and Z. Li, Large-time dynamics of Kuramoto oscillators under the effects of inertia and frustration, SIAM J. Appl. Dyn. Syst., 13 (2014), 466-492.  doi: 10.1137/130926559.  Google Scholar

[21]

S. Y. HaY. Kim and Z. Li, Asymptotic synchronous behavior of Kuramoto type models with frustrations, Netw. Heterog. Media, 9 (2014), 33-64.  doi: 10.3934/nhm.2014.9.33.  Google Scholar

[22]

S. Y. Ha, Y. H. Kim, J. Morales and J. Park, Emergence of phase concentration for the Kuramoto-Sakaguchi equation, Phys. D, 401 (2020), 24 pp. doi: 10.1016/j.physd.2019.132154.  Google Scholar

[23]

S. Y. HaD. Ko and Y. Zhang, Emergence of Phase-Locking in the Kuramoto Model for Identical Oscillators with Frustration, SIAM J. Appl. Dyn. Syst., 17 (2018), 581-625.  doi: 10.1137/17M1112959.  Google Scholar

[24]

S. Y. HaJ. Lee and Y. Zhang, Robustness in the instability of the incoherent state for the Kuramoto-Sakaguchi-Fokker-Planck equation with frustration, Quart. Appl. Math., 77 (2019), 631-654.  doi: 10.1090/qam/1533.  Google Scholar

[25]

S. Y. HaH. Park and Y. Zhang, Nonlinear stability of stationary solutions to the Kuramoto-Sakaguchi equation with frustration, Netw. Heterog. Media, 15 (2020), 427-461.  doi: 10.3934/nhm.2020026.  Google Scholar

[26]

S. Y. Ha and Q. Xiao, Remarks on the nonlinear stability of the Kuramoto-Sakaguchi equation, J. Differential Equations, 259 (2015), 2430-2457.  doi: 10.1016/j.jde.2015.03.038.  Google Scholar

[27]

S. Y. Ha and Q. Xiao, Nonlinear instability of the incoherent state for the Kuramoto-Sakaguchi-Fokker-Plank equation, J. Stat. Phys., 160 (2015), 477-496.  doi: 10.1007/s10955-015-1270-5.  Google Scholar

[28]

A. JadbabaieN. Motee and M. Barahona, On the stability of the Kuramoto model of coupled nonlinear oscillators, Proc. American Control Conf., 5 (2004), 4296-4301.   Google Scholar

[29]

Y. Kuramoto, Chemical Oscillations, Waves and Turbulence, Springer-Verlag, Berlin, 1984. doi: 10.1007/978-3-642-69689-3.  Google Scholar

[30]

Y. Kuramoto, International symposium on mathematical problems in mathematical physics, Lecture notes in theoretical physics, 30 (1975), 420.  Google Scholar

[31]

C. Lancellotti, On the Vlasov limit for systems of nonlinearly coupled oscillators without noise, Transport Theory Statist. Phys., 34 (2005), 523-535.  doi: 10.1080/00411450508951152.  Google Scholar

[32]

Z. Levnajić, Emergent multistability and frustration in phase-repulsive networks of oscillators, Phys. Rev. E, 84 (2011), 016231. Google Scholar

[33]

Z. Li and S. Y. Ha, Uniqueness and well-ordering of emergent phase-locked states for the Kuramoto model with frustration and inertia, Math. Models Methods Appl. Sci., 26 (2016), 357-382.  doi: 10.1142/S0218202516400054.  Google Scholar

[34]

R. E. Mirollo and S. H. Strogatz, The spectrum of the partially locked state for the Kuramoto model, J. Nonlinear Sci., 17 (2007), 309-347.  doi: 10.1007/s00332-006-0806-x.  Google Scholar

[35]

J. Morales and D. Poyato, On the trend to global equilibrium for Kuramoto Oscillators, arXiv: 1908.07657v1 Google Scholar

[36]

E. Oh, C. Choi, B. Kahng and D. Kim, Modular synchronization in complex networks with a gauge Kuramoto model, EPL, 83 (2008), 68003. Google Scholar

[37]

K. ParkS. W. Rhee and M. Y. Choi, Glass synchronization in the network of oscillators with random phase shift, Phys. Rev. E, 57 (1998), 5030-5035.   Google Scholar

[38] A. PikovskyM. Rosenblum and J. Kurths, Synchronization: A universal concept in nonlinear sciences, Cambridge University Press, Cambridge, 2001.  doi: 10.1017/CBO9780511755743.  Google Scholar
[39]

H. Sakaguchi and Y. Kuramoto, A soluble active rotator model showing phase transitions via mutual entrainment, Progr. Theoret. Phys., 76 (1986), 576-581.  doi: 10.1143/PTP.76.576.  Google Scholar

[40]

S. H. Strogatz, From Kuramoto to Crawford: exploring the onset of synchronization in populations of coupled oscillators, Physica D, 143 (2000), 1-20.  doi: 10.1016/S0167-2789(00)00094-4.  Google Scholar

[41]

A. T. Winfree, Biological rhythms and the behavior of populations of coupled oscillators, J. Theor. Biol., 16 (1967), 15-42.   Google Scholar

[42]

A. T. Winfree, The Geometry of Biological Time, Springer, New York, 1980.  Google Scholar

[43]

Z. G. Zheng, Frustration effect on synchronization and chaos in coupled oscillators, Chin. Phys. Soc., 10 (2001), 703-707.   Google Scholar

[1]

Seung-Yeal Ha, Dongnam Ko, Chanho Min, Xiongtao Zhang. Emergent collective behaviors of stochastic kuramoto oscillators. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1059-1081. doi: 10.3934/dcdsb.2019208

[2]

Rabiaa Ouahabi, Nasr-Eddine Hamri. Design of new scheme adaptive generalized hybrid projective synchronization for two different chaotic systems with uncertain parameters. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2361-2370. doi: 10.3934/dcdsb.2020182

[3]

Hyunjin Ahn, Seung-Yeal Ha, Woojoo Shim. Emergent dynamics of a thermodynamic Cucker-Smale ensemble on complete Riemannian manifolds. Kinetic & Related Models, 2021, 14 (2) : 323-351. doi: 10.3934/krm.2021007

[4]

Jan Prüss, Laurent Pujo-Menjouet, G.F. Webb, Rico Zacher. Analysis of a model for the dynamics of prions. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 225-235. doi: 10.3934/dcdsb.2006.6.225

[5]

Juan Manuel Pastor, Javier García-Algarra, Javier Galeano, José María Iriondo, José J. Ramasco. A simple and bounded model of population dynamics for mutualistic networks. Networks & Heterogeneous Media, 2015, 10 (1) : 53-70. doi: 10.3934/nhm.2015.10.53

[6]

Yu Jin, Xiao-Qiang Zhao. The spatial dynamics of a Zebra mussel model in river environments. Discrete & Continuous Dynamical Systems - B, 2021, 26 (4) : 1991-2010. doi: 10.3934/dcdsb.2020362

[7]

Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183

[8]

Guirong Jiang, Qishao Lu. The dynamics of a Prey-Predator model with impulsive state feedback control. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1301-1320. doi: 10.3934/dcdsb.2006.6.1301

[9]

Mingxin Wang, Qianying Zhang. Dynamics for the diffusive Leslie-Gower model with double free boundaries. Discrete & Continuous Dynamical Systems, 2018, 38 (5) : 2591-2607. doi: 10.3934/dcds.2018109

[10]

Wei Wang, Wanbiao Ma, Xiulan Lai. Sufficient conditions for global dynamics of a viral infection model with nonlinear diffusion. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3989-4011. doi: 10.3934/dcdsb.2020271

[11]

Weiyi Zhang, Zuhan Liu, Ling Zhou. Dynamics of a nonlocal diffusive logistic model with free boundaries in time periodic environment. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3767-3784. doi: 10.3934/dcdsb.2020256

[12]

Wen-Bin Yang, Yan-Ling Li, Jianhua Wu, Hai-Xia Li. Dynamics of a food chain model with ratio-dependent and modified Leslie-Gower functional responses. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 2269-2290. doi: 10.3934/dcdsb.2015.20.2269

[13]

Zhikun She, Xin Jiang. Threshold dynamics of a general delayed within-host viral infection model with humoral immunity and two modes of virus transmission. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3835-3861. doi: 10.3934/dcdsb.2020259

[14]

Shuting Chen, Zengji Du, Jiang Liu, Ke Wang. The dynamic properties of a generalized Kawahara equation with Kuramoto-Sivashinsky perturbation. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021098

[15]

Jicheng Liu, Meiling Zhao. Normal deviation of synchronization of stochastic coupled systems. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021079

[16]

Prabir Panja, Soovoojeet Jana, Shyamal kumar Mondal. Dynamics of a stage structure prey-predator model with ratio-dependent functional response and anti-predator behavior of adult prey. Numerical Algebra, Control & Optimization, 2021, 11 (3) : 391-405. doi: 10.3934/naco.2020033

[17]

Mohsen Abdolhosseinzadeh, Mir Mohammad Alipour. Design of experiment for tuning parameters of an ant colony optimization method for the constrained shortest Hamiltonian path problem in the grid networks. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 321-332. doi: 10.3934/naco.2020028

[18]

Gelasio Salaza, Edgardo Ugalde, Jesús Urías. Master--slave synchronization of affine cellular automaton pairs. Discrete & Continuous Dynamical Systems, 2005, 13 (2) : 491-502. doi: 10.3934/dcds.2005.13.491

[19]

Olena Naboka. On synchronization of oscillations of two coupled Berger plates with nonlinear interior damping. Communications on Pure & Applied Analysis, 2009, 8 (6) : 1933-1956. doi: 10.3934/cpaa.2009.8.1933

[20]

Tianhu Yu, Jinde Cao, Chuangxia Huang. Finite-time cluster synchronization of coupled dynamical systems with impulsive effects. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3595-3620. doi: 10.3934/dcdsb.2020248

2019 Impact Factor: 1.105

Article outline

[Back to Top]