• Previous Article
    Boundedness and asymptotic stability in a quasilinear two-species chemotaxis system with nonlinear signal production
  • CPAA Home
  • This Issue
  • Next Article
    The regularity lifting methods for nonnegative solutions of Lane-Emden system
doi: 10.3934/cpaa.2021014

Global solutions of a two-dimensional Riemann problem for the pressure gradient system

1. 

Mathematical Institute, University of Oxford, Oxford OX2 6GG, UK, School of Mathematical Sciences, Fudan University, Shanghai 200433, China, AMSS, Chinese Academy of Sciences, Beijing 100190, China

2. 

Department of Mathematics, Yunnan University, Kunming 650091, China

3. 

School of Mathematical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China, Mathematical Institute, University of Oxford, Oxford OX2 6GG, UK

* Corresponding author

Dedicated to Professor Shuxing Chen on the occasion of his 80th birthday

Received  August 2020 Revised  November 2020 Published  February 2021

Fund Project: Gui-Qiang G. Chen's research was supported in part by the UK Engineering and Physical Sciences Research Council under Grant EP/L015811/1 and the Royal Society–Wolfson Research Merit Award WM090014 (UK). Qin Wang's research was supported in part by National Natural Science Foundation of China (11761077), China Scholarship Council (201807035046), and the Key Project of Yunnan Provincial Science and Technology Department and Yunnan University (No.2018FY001-014). Shengguo Zhu's research was supported in part by the Royal Society–Newton International Fellowships NF170015 and the Monash University–Robert Bartnik Visiting Fellowship. Qin Wang would also like to thank the hospitality and support of the Mathematical Institute, University of Oxford, during his visit in 2019–20

We are concerned with a two-dimensional Riemann problem for the pressure gradient system that is a hyperbolic system of conservation laws. The Riemann initial data consist of four constant states in four sectorial regions such that two shocks and two vortex sheets are generated between the adjacent states. The solutions keep the four constant states and four planar waves outside the outer sonic circle in the self-similar coordinates, while the two shocks keep planar until meeting the outer sonic circle at two different points and then generate a diffracted shock to connect these points, whose location is apriori unknown. Then the problem can be formulated as a free boundary problem, in which the diffracted transonic shock is the one-phase free boundary to connect the two points, while the other part of the sonic circle forms a fixed boundary. We establish the global existence of a solution and the optimal Lipschitz regularity of both the diffracted shock across the two points and the solution across the outer sonic boundary. Then this Riemann problem is solved globally, whose solution contains two vortex sheets and one global shock containing the two originally separated shocks generated by the Riemann data.

Citation: Gui-Qiang G. Chen, Qin Wang, Shengguo Zhu. Global solutions of a two-dimensional Riemann problem for the pressure gradient system. Communications on Pure & Applied Analysis, doi: 10.3934/cpaa.2021014
References:
[1]

R. Agarwal and D. Halt, A modified CUSP scheme in wave/particle split form for unstructured grid Euler flows, In: Frontiers of Computational Fluid Dynamics, pp.155–163, 1994. Google Scholar

[2]

M. BaeG. Q. Chen and M. Feldman, Regularity of solutions to regular shock reflection for potential flow, Invent. Math., 175 (2009), 505-543.  doi: 10.1007/s00222-008-0156-4.  Google Scholar

[3]

M. Bae, G. Q. Chen and M. Feldman, Prandtl-Meyer Reflection Configurations, Transonic Shocks, and Free Boundary Problems, Memoirs Amer. Math. Soc. (to appear); arXiv: 1901.05916, 2020. Google Scholar

[4]

S. CanicB. L. Keyfitz and E. H. Kim, Free boundary problems for the unsteady transonic small disturbance equation: Transonic regular reflection, Methods Appl. Anal., 7 (2000), 313-336.  doi: 10.4310/MAA.2000.v7.n2.a4.  Google Scholar

[5]

S. CanicB. L. Keyfitz and E. H. Kim, A free boundary problem for a quasi-linear degenerate elliptic equation: regular reflection of weak shocks, Commun. Pure Appl. Math., 55 (2002), 71-92.  doi: 10.1002/cpa.10013.  Google Scholar

[6]

S. CanicB. L. Keyfitz and E. H. Kim, Free boundary problems for nonlinear wave systems: Mach stems for interacting shocks, SIAM J. Math. Anal., 37 (2006), 1947-1977.  doi: 10.1137/S003614100342989X.  Google Scholar

[7]

T. ChangG. Q. Chen and S. L. Yang, On the $2$-D Riemann problem for the compressible Euler equations. I. Interaction of shocks and rarefaction waves, Discrete Contin. Dynam. Systems, 1 (1995), 555-584.  doi: 10.3934/dcds.1995.1.555.  Google Scholar

[8]

T. Chang, G. Q. Chen and S. L. Yang, On the $2$-D Riemann problem for the compressible Euler equations., Ⅱ. Interaction of contact discontinuities doi: 10.3934/dcds.2000.6.419.  Google Scholar

[9]

T. Chang and L. Hsiao, The Riemann Problem and Interaction of Waves in Gas Dynamics, Longman Scientific & Technical: Harlow; John Wiley & Sons, Inc., New York, 1989.  Google Scholar

[10]

G. Q. ChenX. Deng and W. Xiang, Shock diffraction by convex cornered wedges for the nonlinear wave system, Arch. Ration. Mech. Anal., 211 (2014), 61-112.  doi: 10.1007/s00205-013-0681-1.  Google Scholar

[11]

G. Q. Chen and M. Feldman, Global solutions of shock reflection by large-angle wedges for potential flow, Ann. Math., 171 (2010), 1067-1182.  doi: 10.4007/annals.2010.171.1067.  Google Scholar

[12] G. Q. Chen and M. Feldman, The Mathematics of Shock Reflection-Diffraction and Von Neumann's Conjectures, Princeton University Press, Princeton, 2018.   Google Scholar
[13]

G. Q. Chen and P. LeFloch, Entropy flux-splittings for hyperbolic conservation laws, Commun. Pure Appl. Math., 48 (1995), 691-729.  doi: 10.1002/cpa.3160480703.  Google Scholar

[14]

S. X. Chen, Multidimensional Riemann problem for semilinear wave equations, Commun. Partial Differ. Equ., 17 (1992), 715-736.  doi: 10.1080/03605309208820861.  Google Scholar

[15]

S. X. Chen, Construction of solutions to M-D Riemann problems for a $2\times 2$ quasilinear hyperbolic system, Chinese Ann. Math., 18B (1997), 345-358.   Google Scholar

[16]

S. X. Chen and B. Fang, Stability of transonic shocks in supersonic flow past a wedge, J. Differ. Equ., 233 (2007), 105-135.  doi: 10.1016/j.jde.2006.09.020.  Google Scholar

[17]

S. X. Chen and A. Qu, Two-dimensional Riemann problems for Chaplygin gas, SIAM J. Math. Anal., 44 (2012), 2146-2178.  doi: 10.1137/110838091.  Google Scholar

[18]

C. M. Dafermos, Hyperbolic Conservation Laws in Continuum Physics, Springer-Verlag, Berlin, 2016. doi: 10.1007/978-3-662-49451-6.  Google Scholar

[19]

J. V. Egorov and V. A. Kondrat'ev, The oblique derivative problem, Mathematics of the USSR-Sbornik, 7 (1969), 139 pp.  Google Scholar

[20]

V. Elling and T. P. Liu, Supersonic flow onto a solid wedge, Commun. Pure Appl. Math., 61 (2008), 1347-1448.  doi: 10.1002/cpa.20231.  Google Scholar

[21]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, 2001.  Google Scholar

[22]

J. Glimm, Solutions in the large for nonlinear hyperbolic systems of equations, Commun. Pure Appl. Math., 18 (1965), 697-715.  doi: 10.1002/cpa.3160180408.  Google Scholar

[23]

L. Hörmander, Pseudo-differential operators and non-elliptic boundary problems, Ann. Math., 83 (1966), 129-209.  doi: 10.2307/1970473.  Google Scholar

[24]

B. L. Keyfitz and S. Canic, Riemann problems for the two-dimensional unsteady transonic small disturbance equation, SIAM J. Appl. Math., 58 (1998), 636-665.  doi: 10.1137/S0036139996300.  Google Scholar

[25]

E. H. Kim, A global subsonic solution to an interacting transonic shock for the self-similar nonlinear wave equation, J. Differ. Equ., 248 (2010), 2906-2930.  doi: 10.1016/j.jde.2010.02.021.  Google Scholar

[26]

P. Lax, Hyperbolic systems of conservation laws Ⅱ, Commun. Pure Appl. Math., 4 (1957), 537-566.  doi: 10.1002/cpa.3160100406.  Google Scholar

[27]

J. Li, T. Zhang, and S. Yang, The Two-Dimensional Riemann Problem in Gas Dynamics, Monographs and Surveys in Pure and Applied Mathematics, Vol. 98, Chapman & Hall/CRC, Longman, Harlow, 1998.  Google Scholar

[28]

Y. F. Li and Y. M. Cao, Large-particle difference method with second-order accuracy in gasdynamics, Sci. China, 28A (1985), 1024-1035.   Google Scholar

[29]

G. M. Lieberman, The Perron process applied to oblique derivative problems, Adv. Math., 55 (1985), 161-172.  doi: 10.1016/0001-8708(85)90019-2.  Google Scholar

[30]

G. M. Lieberman, Mixed boundary value problems for elliptic and parabolic differential equations of second order, J. Math. Anal. Appl., 113 (1986), 422-440.  doi: 10.1016/0022-247X(86)90314-8.  Google Scholar

[31]

P. R. Popivanov and D. K. Palagachev, The Degenerate Oblique Derivative Problem for Elliptic and Parabolic Equations, Akademie Verlag, Berlin, 1997.  Google Scholar

[32]

B. Riemann, Über die Fortpflanzung ebener Luftvellen von endlicher Schwingungsweite, Gött. Abh. Math. Cl., 8 (1860), 43-65.   Google Scholar

[33]

J. Smoller., The Shock Waves and Reaction-Diffusion Equations, 2nd edition, Springer-Verlag, New York, 1994. doi: 10.1007/978-1-4612-0873-0.  Google Scholar

[34]

B. Winzell, A boundary value problem with an oblique derivative, Commun. Partial Differ. Equ., 6 (1981), 305-328.  doi: 10.1080/03605308108820179.  Google Scholar

[35]

H. Yuan, On transonic shocks in two-dimensional variable-area ducts for steady Euler system, SIAM J. Math. Anal., 38 (2006), 1343-1370.  doi: 10.1137/050642447.  Google Scholar

[36]

P. ZhangJ. Li and T. Zhang, On two-dimensional Riemann problem for pressure-gradient equations of the Euler system, Discret. Contin. Dyn. Syst., 4 (1998), 609-634.  doi: 10.3934/dcds.1998.4.609.  Google Scholar

[37]

Y. Zheng, Existence of solutions to the transonic pressure gradient equations of the compressible Euler equations in elliptic regions, Commun. Partial Differ. Equ., 22 (1997), 1849-1868.  doi: 10.1080/03605309708821323.  Google Scholar

[38]

Y. Zheng, A global solution to a two-dimensional Riemann problem involving shocks as free boundaries, Acta Math. Appl. Sin., 19 (2003), 559-572.  doi: 10.1007/210255-003-0131-1.  Google Scholar

[39]

Y. Zheng, Two-dimensional regular shock reflection for the pressure gradient system of conservation laws, Acta Math. Appl. Sin., 22 (2006), 177-210.  doi: 10.1007/s10255-006-0296-5.  Google Scholar

[40]

Y. Zheng, Systems of Conservation Laws: Two-Dimensional Riemann Problems, Springer Science & Business Media, 2012. doi: 10.1007/978-1-4612-0141-0.  Google Scholar

show all references

References:
[1]

R. Agarwal and D. Halt, A modified CUSP scheme in wave/particle split form for unstructured grid Euler flows, In: Frontiers of Computational Fluid Dynamics, pp.155–163, 1994. Google Scholar

[2]

M. BaeG. Q. Chen and M. Feldman, Regularity of solutions to regular shock reflection for potential flow, Invent. Math., 175 (2009), 505-543.  doi: 10.1007/s00222-008-0156-4.  Google Scholar

[3]

M. Bae, G. Q. Chen and M. Feldman, Prandtl-Meyer Reflection Configurations, Transonic Shocks, and Free Boundary Problems, Memoirs Amer. Math. Soc. (to appear); arXiv: 1901.05916, 2020. Google Scholar

[4]

S. CanicB. L. Keyfitz and E. H. Kim, Free boundary problems for the unsteady transonic small disturbance equation: Transonic regular reflection, Methods Appl. Anal., 7 (2000), 313-336.  doi: 10.4310/MAA.2000.v7.n2.a4.  Google Scholar

[5]

S. CanicB. L. Keyfitz and E. H. Kim, A free boundary problem for a quasi-linear degenerate elliptic equation: regular reflection of weak shocks, Commun. Pure Appl. Math., 55 (2002), 71-92.  doi: 10.1002/cpa.10013.  Google Scholar

[6]

S. CanicB. L. Keyfitz and E. H. Kim, Free boundary problems for nonlinear wave systems: Mach stems for interacting shocks, SIAM J. Math. Anal., 37 (2006), 1947-1977.  doi: 10.1137/S003614100342989X.  Google Scholar

[7]

T. ChangG. Q. Chen and S. L. Yang, On the $2$-D Riemann problem for the compressible Euler equations. I. Interaction of shocks and rarefaction waves, Discrete Contin. Dynam. Systems, 1 (1995), 555-584.  doi: 10.3934/dcds.1995.1.555.  Google Scholar

[8]

T. Chang, G. Q. Chen and S. L. Yang, On the $2$-D Riemann problem for the compressible Euler equations., Ⅱ. Interaction of contact discontinuities doi: 10.3934/dcds.2000.6.419.  Google Scholar

[9]

T. Chang and L. Hsiao, The Riemann Problem and Interaction of Waves in Gas Dynamics, Longman Scientific & Technical: Harlow; John Wiley & Sons, Inc., New York, 1989.  Google Scholar

[10]

G. Q. ChenX. Deng and W. Xiang, Shock diffraction by convex cornered wedges for the nonlinear wave system, Arch. Ration. Mech. Anal., 211 (2014), 61-112.  doi: 10.1007/s00205-013-0681-1.  Google Scholar

[11]

G. Q. Chen and M. Feldman, Global solutions of shock reflection by large-angle wedges for potential flow, Ann. Math., 171 (2010), 1067-1182.  doi: 10.4007/annals.2010.171.1067.  Google Scholar

[12] G. Q. Chen and M. Feldman, The Mathematics of Shock Reflection-Diffraction and Von Neumann's Conjectures, Princeton University Press, Princeton, 2018.   Google Scholar
[13]

G. Q. Chen and P. LeFloch, Entropy flux-splittings for hyperbolic conservation laws, Commun. Pure Appl. Math., 48 (1995), 691-729.  doi: 10.1002/cpa.3160480703.  Google Scholar

[14]

S. X. Chen, Multidimensional Riemann problem for semilinear wave equations, Commun. Partial Differ. Equ., 17 (1992), 715-736.  doi: 10.1080/03605309208820861.  Google Scholar

[15]

S. X. Chen, Construction of solutions to M-D Riemann problems for a $2\times 2$ quasilinear hyperbolic system, Chinese Ann. Math., 18B (1997), 345-358.   Google Scholar

[16]

S. X. Chen and B. Fang, Stability of transonic shocks in supersonic flow past a wedge, J. Differ. Equ., 233 (2007), 105-135.  doi: 10.1016/j.jde.2006.09.020.  Google Scholar

[17]

S. X. Chen and A. Qu, Two-dimensional Riemann problems for Chaplygin gas, SIAM J. Math. Anal., 44 (2012), 2146-2178.  doi: 10.1137/110838091.  Google Scholar

[18]

C. M. Dafermos, Hyperbolic Conservation Laws in Continuum Physics, Springer-Verlag, Berlin, 2016. doi: 10.1007/978-3-662-49451-6.  Google Scholar

[19]

J. V. Egorov and V. A. Kondrat'ev, The oblique derivative problem, Mathematics of the USSR-Sbornik, 7 (1969), 139 pp.  Google Scholar

[20]

V. Elling and T. P. Liu, Supersonic flow onto a solid wedge, Commun. Pure Appl. Math., 61 (2008), 1347-1448.  doi: 10.1002/cpa.20231.  Google Scholar

[21]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, 2001.  Google Scholar

[22]

J. Glimm, Solutions in the large for nonlinear hyperbolic systems of equations, Commun. Pure Appl. Math., 18 (1965), 697-715.  doi: 10.1002/cpa.3160180408.  Google Scholar

[23]

L. Hörmander, Pseudo-differential operators and non-elliptic boundary problems, Ann. Math., 83 (1966), 129-209.  doi: 10.2307/1970473.  Google Scholar

[24]

B. L. Keyfitz and S. Canic, Riemann problems for the two-dimensional unsteady transonic small disturbance equation, SIAM J. Appl. Math., 58 (1998), 636-665.  doi: 10.1137/S0036139996300.  Google Scholar

[25]

E. H. Kim, A global subsonic solution to an interacting transonic shock for the self-similar nonlinear wave equation, J. Differ. Equ., 248 (2010), 2906-2930.  doi: 10.1016/j.jde.2010.02.021.  Google Scholar

[26]

P. Lax, Hyperbolic systems of conservation laws Ⅱ, Commun. Pure Appl. Math., 4 (1957), 537-566.  doi: 10.1002/cpa.3160100406.  Google Scholar

[27]

J. Li, T. Zhang, and S. Yang, The Two-Dimensional Riemann Problem in Gas Dynamics, Monographs and Surveys in Pure and Applied Mathematics, Vol. 98, Chapman & Hall/CRC, Longman, Harlow, 1998.  Google Scholar

[28]

Y. F. Li and Y. M. Cao, Large-particle difference method with second-order accuracy in gasdynamics, Sci. China, 28A (1985), 1024-1035.   Google Scholar

[29]

G. M. Lieberman, The Perron process applied to oblique derivative problems, Adv. Math., 55 (1985), 161-172.  doi: 10.1016/0001-8708(85)90019-2.  Google Scholar

[30]

G. M. Lieberman, Mixed boundary value problems for elliptic and parabolic differential equations of second order, J. Math. Anal. Appl., 113 (1986), 422-440.  doi: 10.1016/0022-247X(86)90314-8.  Google Scholar

[31]

P. R. Popivanov and D. K. Palagachev, The Degenerate Oblique Derivative Problem for Elliptic and Parabolic Equations, Akademie Verlag, Berlin, 1997.  Google Scholar

[32]

B. Riemann, Über die Fortpflanzung ebener Luftvellen von endlicher Schwingungsweite, Gött. Abh. Math. Cl., 8 (1860), 43-65.   Google Scholar

[33]

J. Smoller., The Shock Waves and Reaction-Diffusion Equations, 2nd edition, Springer-Verlag, New York, 1994. doi: 10.1007/978-1-4612-0873-0.  Google Scholar

[34]

B. Winzell, A boundary value problem with an oblique derivative, Commun. Partial Differ. Equ., 6 (1981), 305-328.  doi: 10.1080/03605308108820179.  Google Scholar

[35]

H. Yuan, On transonic shocks in two-dimensional variable-area ducts for steady Euler system, SIAM J. Math. Anal., 38 (2006), 1343-1370.  doi: 10.1137/050642447.  Google Scholar

[36]

P. ZhangJ. Li and T. Zhang, On two-dimensional Riemann problem for pressure-gradient equations of the Euler system, Discret. Contin. Dyn. Syst., 4 (1998), 609-634.  doi: 10.3934/dcds.1998.4.609.  Google Scholar

[37]

Y. Zheng, Existence of solutions to the transonic pressure gradient equations of the compressible Euler equations in elliptic regions, Commun. Partial Differ. Equ., 22 (1997), 1849-1868.  doi: 10.1080/03605309708821323.  Google Scholar

[38]

Y. Zheng, A global solution to a two-dimensional Riemann problem involving shocks as free boundaries, Acta Math. Appl. Sin., 19 (2003), 559-572.  doi: 10.1007/210255-003-0131-1.  Google Scholar

[39]

Y. Zheng, Two-dimensional regular shock reflection for the pressure gradient system of conservation laws, Acta Math. Appl. Sin., 22 (2006), 177-210.  doi: 10.1007/s10255-006-0296-5.  Google Scholar

[40]

Y. Zheng, Systems of Conservation Laws: Two-Dimensional Riemann Problems, Springer Science & Business Media, 2012. doi: 10.1007/978-1-4612-0141-0.  Google Scholar

Figure 1.  The general Riemann initial data
Figure 2.  The configuration of the four initial waves
Figure 3.  The Riemann data and the global solution when $ \alpha_1 = 0 $
Figure 4.  Hypothetical curves
[1]

Ying Yang. Global classical solutions to two-dimensional chemotaxis-shallow water system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2625-2643. doi: 10.3934/dcdsb.2020198

[2]

Jinye Shen, Xian-Ming Gu. Two finite difference methods based on an H2N2 interpolation for two-dimensional time fractional mixed diffusion and diffusion-wave equations. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021086

[3]

Lu Xu, Chunlai Mu, Qiao Xin. Global boundedness of solutions to the two-dimensional forager-exploiter model with logistic source. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3031-3043. doi: 10.3934/dcds.2020396

[4]

Tong Li, Nitesh Mathur. Riemann problem for a non-strictly hyperbolic system in chemotaxis. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021128

[5]

Amira Khelifa, Yacine Halim. Global behavior of P-dimensional difference equations system. Electronic Research Archive, , () : -. doi: 10.3934/era.2021029

[6]

Carlos Fresneda-Portillo, Sergey E. Mikhailov. Analysis of Boundary-Domain Integral Equations to the mixed BVP for a compressible stokes system with variable viscosity. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3059-3088. doi: 10.3934/cpaa.2019137

[7]

Brahim Alouini. Finite dimensional global attractor for a class of two-coupled nonlinear fractional Schrödinger equations. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021013

[8]

Minh-Phuong Tran, Thanh-Nhan Nguyen. Pointwise gradient bounds for a class of very singular quasilinear elliptic equations. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021043

[9]

Yongqiang Fu, Xiaoju Zhang. Global existence and asymptotic behavior of weak solutions for time-space fractional Kirchhoff-type diffusion equations. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021091

[10]

Elvise Berchio, Filippo Gazzola, Dario Pierotti. Nodal solutions to critical growth elliptic problems under Steklov boundary conditions. Communications on Pure & Applied Analysis, 2009, 8 (2) : 533-557. doi: 10.3934/cpaa.2009.8.533

[11]

Yang Zhang. A free boundary problem of the cancer invasion. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021092

[12]

Bo Duan, Zhengce Zhang. A reaction-diffusion-advection two-species competition system with a free boundary in heterogeneous environment. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021067

[13]

Madalina Petcu, Roger Temam. The one dimensional shallow water equations with Dirichlet boundary conditions on the velocity. Discrete & Continuous Dynamical Systems - S, 2011, 4 (1) : 209-222. doi: 10.3934/dcdss.2011.4.209

[14]

Vandana Sharma. Global existence and uniform estimates of solutions to reaction diffusion systems with mass transport type boundary conditions. Communications on Pure & Applied Analysis, 2021, 20 (3) : 955-974. doi: 10.3934/cpaa.2021001

[15]

Guanming Gai, Yuanyuan Nie, Chunpeng Wang. A degenerate elliptic problem from subsonic-sonic flows in convergent nozzles. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021070

[16]

Zhigang Pan, Chanh Kieu, Quan Wang. Hopf bifurcations and transitions of two-dimensional Quasi-Geostrophic flows. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021025

[17]

Markus Harju, Jaakko Kultima, Valery Serov, Teemu Tyni. Two-dimensional inverse scattering for quasi-linear biharmonic operator. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021026

[18]

Qiwei Wu, Liping Luan. Large-time behavior of solutions to unipolar Euler-Poisson equations with time-dependent damping. Communications on Pure & Applied Analysis, 2021, 20 (3) : 995-1023. doi: 10.3934/cpaa.2021003

[19]

Sergey E. Mikhailov, Carlos F. Portillo. Boundary-Domain Integral Equations equivalent to an exterior mixed BVP for the variable-viscosity compressible Stokes PDEs. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1103-1133. doi: 10.3934/cpaa.2021009

[20]

Oleksandr Boichuk, Victor Feruk. Boundary-value problems for weakly singular integral equations. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021094

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (32)
  • HTML views (140)
  • Cited by (0)

Other articles
by authors

[Back to Top]