# American Institute of Mathematical Sciences

March  2021, 20(3): 1199-1211. doi: 10.3934/cpaa.2021016

## Cylindrical estimates for mean curvature flow in hyperbolic spaces

 Center of Mathematical Sciences, Zhejiang University, Hangzhou, 310027, China

Received  June 2020 Revised  December 2020 Published  February 2021

We consider the mean curvature flow of a closed hypersurface in hyperbolic space. Under a suitable pinching assumption on the initial data, we prove a priori estimate on the principal curvatures which implies that the asymptotic profile near a singularity is either strictly convex or cylindrical. This result generalizes the estimates obtained in the previous works of Huisken, Sinestrari and Nguyen on the mean curvature flow of hypersurfaces in Euclidean spaces and in the spheres.

Citation: Zhengchao Ji. Cylindrical estimates for mean curvature flow in hyperbolic spaces. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1199-1211. doi: 10.3934/cpaa.2021016
##### References:
 [1] S. Brendle and G. Huisken, Mean curvature flow with surgery of convex surfaces in $\mathbb{R}^3$, Invent. Math., 203 (2016), 615-654.  doi: 10.1007/s00222-015-0599-3.  Google Scholar [2] S. Brendle and G. Huisken, A fully nonlinear flow for two-convex hypersurfaces, Invent. Math., 2 (2017), 559-613.  doi: 10.1007/s00222-017-0736-2.  Google Scholar [3] E. Codá Marques, Deforming three-manifolds with positive scalar curvature, Ann. of Math., 176 (2012), 825-863.  doi: 10.4007/annals.2012.176.2.3.  Google Scholar [4] R. S. Hamilton, Three-manifolds with positive Ricci curvature, J. Differ. Geom., 17 (1982), 255-306.  doi: 10.4310/jdg/1214436922.  Google Scholar [5] G. Hamilton, Flow by mean curvature of convex surfaces into spheres, J. Differ. Geom., 20 (1984), 237-266.  doi: 10.4310/jdg/1214438998.  Google Scholar [6] G. Hamilton, Contracting convex hypersurfaces in Riemannian manifolds by their mean curvature, J. Differ. Geom., 84 (1986), 463-480.  doi: 10.1007/BF01388742.  Google Scholar [7] G. Hamilton, Deforming hypersurfaces of the the sphere by their mean curvature, Math. Z., 84 (1986), 205-219.  doi: 10.1007/BF01166458.  Google Scholar [8] G. Huisken and C. Sinestrari, Convexity estimates for mean curvature flow and singularities of mean convex surfaces, Acta. Math., 183 (1999), 45-70.  doi: 10.1007/BF02392946.  Google Scholar [9] G. Huisken and C. Sinestrari, Mean curvature flow with surgeries of two-convex hypersurfaces, Invent. Math., 175 (2009), 137-221.  doi: 10.1007/s00222-008-0148-4.  Google Scholar [10] L. Lei and H. W. Xu, A new version of Huisken's convergence theorem for mean curvature flow in spheres, preprint, arXiv: math/1505.07217. Google Scholar [11] L. Lei and H. W. Xu, An optimal convergence theorem for mean curvature flow arbitrary codimension in hyperbolic spaces, preprint, arXiv: math/1503.06747. Google Scholar [12] L. Lei and H. W. Xu, Mean curvature flow of arbitrary codimension in spheres and sharp differentiable sphere theorem, preprint, arXiv: math/1506.06371v2. Google Scholar [13] K. F. Liu, H. W. Xu, F. Ye and E. T. Zhao, The extension and convrgence of mean curvature flow in higher codimension, Trans. Amer. Math. Soc., 175 (2009), 137-221.  doi: 10.1090/tran/7281.  Google Scholar [14] K. F. Liu, H. W. Xu, F. Ye and E. T. Zhao, Mean curvature flow of higher codimension in hyperbolic spaces, Commun. Anal. Geom., 21 (2013), 651-669.  doi: 10.4310/CAG.2013.v21.n3.a8.  Google Scholar [15] K. F. Liu, H. W. Xu and E. T. Zhao, Mean curvature flow of higher codimension in Riemmanian manifolds, preprint, arXiv: math/1204.0107. doi: 10.4310/CAG.2013.v21.n3.a8.  Google Scholar [16] H. T. Nguyen, Convexity and cylindrical estimates for mean curvature flow in the sphere, Trans. Amer. Math. Soc., 367 (2015), 4517-4536.  doi: 10.1090/S0002-9947-2015-05927-3.  Google Scholar [17] G. Pipoli and Carlo Sinestrari, Cylindrical estimates for mean curvature flow of hypersurfaces in CROSSes, Ann. Glob. Anal. Geom., 51 (2017), 179-188.  doi: 10.1007/s10455-016-9530-4.  Google Scholar

show all references

##### References:
 [1] S. Brendle and G. Huisken, Mean curvature flow with surgery of convex surfaces in $\mathbb{R}^3$, Invent. Math., 203 (2016), 615-654.  doi: 10.1007/s00222-015-0599-3.  Google Scholar [2] S. Brendle and G. Huisken, A fully nonlinear flow for two-convex hypersurfaces, Invent. Math., 2 (2017), 559-613.  doi: 10.1007/s00222-017-0736-2.  Google Scholar [3] E. Codá Marques, Deforming three-manifolds with positive scalar curvature, Ann. of Math., 176 (2012), 825-863.  doi: 10.4007/annals.2012.176.2.3.  Google Scholar [4] R. S. Hamilton, Three-manifolds with positive Ricci curvature, J. Differ. Geom., 17 (1982), 255-306.  doi: 10.4310/jdg/1214436922.  Google Scholar [5] G. Hamilton, Flow by mean curvature of convex surfaces into spheres, J. Differ. Geom., 20 (1984), 237-266.  doi: 10.4310/jdg/1214438998.  Google Scholar [6] G. Hamilton, Contracting convex hypersurfaces in Riemannian manifolds by their mean curvature, J. Differ. Geom., 84 (1986), 463-480.  doi: 10.1007/BF01388742.  Google Scholar [7] G. Hamilton, Deforming hypersurfaces of the the sphere by their mean curvature, Math. Z., 84 (1986), 205-219.  doi: 10.1007/BF01166458.  Google Scholar [8] G. Huisken and C. Sinestrari, Convexity estimates for mean curvature flow and singularities of mean convex surfaces, Acta. Math., 183 (1999), 45-70.  doi: 10.1007/BF02392946.  Google Scholar [9] G. Huisken and C. Sinestrari, Mean curvature flow with surgeries of two-convex hypersurfaces, Invent. Math., 175 (2009), 137-221.  doi: 10.1007/s00222-008-0148-4.  Google Scholar [10] L. Lei and H. W. Xu, A new version of Huisken's convergence theorem for mean curvature flow in spheres, preprint, arXiv: math/1505.07217. Google Scholar [11] L. Lei and H. W. Xu, An optimal convergence theorem for mean curvature flow arbitrary codimension in hyperbolic spaces, preprint, arXiv: math/1503.06747. Google Scholar [12] L. Lei and H. W. Xu, Mean curvature flow of arbitrary codimension in spheres and sharp differentiable sphere theorem, preprint, arXiv: math/1506.06371v2. Google Scholar [13] K. F. Liu, H. W. Xu, F. Ye and E. T. Zhao, The extension and convrgence of mean curvature flow in higher codimension, Trans. Amer. Math. Soc., 175 (2009), 137-221.  doi: 10.1090/tran/7281.  Google Scholar [14] K. F. Liu, H. W. Xu, F. Ye and E. T. Zhao, Mean curvature flow of higher codimension in hyperbolic spaces, Commun. Anal. Geom., 21 (2013), 651-669.  doi: 10.4310/CAG.2013.v21.n3.a8.  Google Scholar [15] K. F. Liu, H. W. Xu and E. T. Zhao, Mean curvature flow of higher codimension in Riemmanian manifolds, preprint, arXiv: math/1204.0107. doi: 10.4310/CAG.2013.v21.n3.a8.  Google Scholar [16] H. T. Nguyen, Convexity and cylindrical estimates for mean curvature flow in the sphere, Trans. Amer. Math. Soc., 367 (2015), 4517-4536.  doi: 10.1090/S0002-9947-2015-05927-3.  Google Scholar [17] G. Pipoli and Carlo Sinestrari, Cylindrical estimates for mean curvature flow of hypersurfaces in CROSSes, Ann. Glob. Anal. Geom., 51 (2017), 179-188.  doi: 10.1007/s10455-016-9530-4.  Google Scholar
 [1] Xinqun Mei, Jundong Zhou. The interior gradient estimate of prescribed Hessian quotient curvature equation in the hyperbolic space. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1187-1198. doi: 10.3934/cpaa.2021012 [2] Matthias Erbar, Jan Maas. Gradient flow structures for discrete porous medium equations. Discrete & Continuous Dynamical Systems, 2014, 34 (4) : 1355-1374. doi: 10.3934/dcds.2014.34.1355 [3] Feng Luo. A combinatorial curvature flow for compact 3-manifolds with boundary. Electronic Research Announcements, 2005, 11: 12-20. [4] Annalisa Cesaroni, Valerio Pagliari. Convergence of nonlocal geometric flows to anisotropic mean curvature motion. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021065 [5] Guido De Philippis, Antonio De Rosa, Jonas Hirsch. The area blow up set for bounded mean curvature submanifolds with respect to elliptic surface energy functionals. Discrete & Continuous Dynamical Systems, 2019, 39 (12) : 7031-7056. doi: 10.3934/dcds.2019243 [6] Ying Sui, Huimin Yu. Singularity formation for compressible Euler equations with time-dependent damping. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021062 [7] Tomasz Kosmala, Markus Riedle. Variational solutions of stochastic partial differential equations with cylindrical Lévy noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2879-2898. doi: 10.3934/dcdsb.2020209 [8] Shu-Yu Hsu. Existence and properties of ancient solutions of the Yamabe flow. Discrete & Continuous Dynamical Systems, 2018, 38 (1) : 91-129. doi: 10.3934/dcds.2018005 [9] Ling-Bing He, Li Xu. On the compressible Navier-Stokes equations in the whole space: From non-isentropic flow to isentropic flow. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3489-3530. doi: 10.3934/dcds.2021005 [10] Tuan Hiep Pham, Jérôme Laverne, Jean-Jacques Marigo. Stress gradient effects on the nucleation and propagation of cohesive cracks. Discrete & Continuous Dynamical Systems - S, 2016, 9 (2) : 557-584. doi: 10.3934/dcdss.2016012 [11] Krzysztof A. Krakowski, Luís Machado, Fátima Silva Leite. A unifying approach for rolling symmetric spaces. Journal of Geometric Mechanics, 2021, 13 (1) : 145-166. doi: 10.3934/jgm.2020016 [12] Naeem M. H. Alkoumi, Pedro J. Torres. Estimates on the number of limit cycles of a generalized Abel equation. Discrete & Continuous Dynamical Systems, 2011, 31 (1) : 25-34. doi: 10.3934/dcds.2011.31.25 [13] Chenjie Fan, Zehua Zhao. Decay estimates for nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3973-3984. doi: 10.3934/dcds.2021024 [14] Pablo D. Carrasco, Túlio Vales. A symmetric Random Walk defined by the time-one map of a geodesic flow. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2891-2905. doi: 10.3934/dcds.2020390 [15] M. Grasselli, V. Pata. Asymptotic behavior of a parabolic-hyperbolic system. Communications on Pure & Applied Analysis, 2004, 3 (4) : 849-881. doi: 10.3934/cpaa.2004.3.849 [16] Graziano Crasta, Philippe G. LeFloch. Existence result for a class of nonconservative and nonstrictly hyperbolic systems. Communications on Pure & Applied Analysis, 2002, 1 (4) : 513-530. doi: 10.3934/cpaa.2002.1.513 [17] Thomas Barthelmé, Andrey Gogolev. Centralizers of partially hyperbolic diffeomorphisms in dimension 3. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021044 [18] Julian Koellermeier, Giovanni Samaey. Projective integration schemes for hyperbolic moment equations. Kinetic & Related Models, 2021, 14 (2) : 353-387. doi: 10.3934/krm.2021008 [19] Alexandre B. Simas, Fábio J. Valentim. $W$-Sobolev spaces: Higher order and regularity. Communications on Pure & Applied Analysis, 2015, 14 (2) : 597-607. doi: 10.3934/cpaa.2015.14.597 [20] Andrea Cianchi, Adele Ferone. Improving sharp Sobolev type inequalities by optimal remainder gradient norms. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1363-1386. doi: 10.3934/cpaa.2012.11.1363

2019 Impact Factor: 1.105

Article outline