-
Previous Article
Classification of positive solutions for fully nonlinear elliptic equations in unbounded cylinders
- CPAA Home
- This Issue
-
Next Article
Existence of solution and asymptotic behavior for a class of parabolic equations
Global well-posedness of the $ n $-dimensional hyper-dissipative Boussinesq system without thermal diffusivity
1. | Hunan Key Laboratory for Computation and Simulation in Science and Engineering, School of Mathematics and Computational Science, Xiangtan University, Xiangtan, Hunan, 411100, China |
2. | The Center of Applied Mathematics, Yichun University, Yichun, Jiangxi, 336000, China |
In this paper, we start to investigate the global existence and uniqueness of weak solutions of the $ n $-dimensional ($ n\geq3 $) hyper-dissipative Boussinesq system without thermal diffusivity in the periodic domain $ \mathbb{T}^n $ with the initial data $ u_0\in L^2(\mathbb{T}^n) $ and $ \theta_0 \in L^2(\mathbb{T}^n)\cap L^{\frac{4n}{n+2}}(\mathbb{T}^n) $. Then we focus on the vanishing thermal diffusion limit and obtain the convergent result in the sense of $ L^2 $-norm. Ultimately, we also prove the global regularity of this system in the case of 3-dimension.
References:
[1] |
H. Abidi and P. Zhang,
On the global well-posedness of 2-D Boussinesq system with variable viscosity, Adv. Math, 305 (2017), 1202-1249.
doi: 10.1016/j.aim.2016.09.036. |
[2] |
N. Boardman, R. H. Ji, H. Qiu and J. Wu,
Uniqueness of weak solutions to the Boussinesq equations without thermal diffusion, Commun. Math. Sci, 17 (2019), 1595-1624.
doi: 10.4310/CMS.2019.v17.n6.a5. |
[3] |
C. Cao and J. Wu,
Global Regularity for the Two-Dimensional Anisotropic Boussinesq Equations with Vertical Dissipation, Archive for Rational Mechanics & Analysis, 208 (2013), 985-1004.
doi: 10.1007/s00205-013-0610-3. |
[4] |
D. Chae,
Global regularity for the 2D Boussinesq equations with partial viscosity terms, Adv. Math., 203 (2006), 497-513.
doi: 10.1016/j.aim.2005.05.001. |
[5] |
L. He,
Smoothing estimates of 2D incompressible Navier-Stokes equations in bounded domains with applications, J. Funct. Anal., 262 (2012), 3430-3464.
doi: 10.1016/j.jfa.2012.01.017. |
[6] |
T. Hmidi and S. Keraani,
On the global well-posedness of the Boussinesq system with zero viscosity, Indiana Univ. Math. J, 58 (2009), 1591-1618.
doi: 10.1512/iumj.2009.58.3590. |
[7] |
L. Jin, J. Fan, G. Nakamura and Y. Zhou,
Partial vanishing viscosity limit for the 2D Boussinesq system with a slip boundary condition, Bound. Value Probl., 2012 (2012), 20-24.
doi: 10.1186/1687-2770-2012-20. |
[8] |
Q. Jiu and H. Yu,
Global well-posedness for 3D generalized Navier-Stokes-Boussinesq equations, Acta Mathematicae Applicatae Sinica, English Series, 32 (2016), 1-16.
doi: 10.1007/s10255-016-0539-z. |
[9] |
I. Kukavica and W. Wang,
Global Sobolev persistence for the fractional Boussinesq equations with zero diffusivity, Pure Appl. Funct. Anal., 5 (2020), 27-45.
|
[10] |
I. Kukavica and W. Wang,
Long time behavior of solutions to the 2D Boussinesq equations with zero diffusivity, J. Dyn. Differ. Equ., 32 (2020), 2061-2077.
doi: 10.1007/s10884-019-09802-w. |
[11] |
M. Lai, R. Pan and K. Zhao,
Initial Boundary Value Problem for Two-Dimensional Viscous Boussinesq Equations, Arch. Ration. Mech. Anal., 199 (2011), 739-760.
doi: 10.1007/s00205-010-0357-z. |
[12] |
A. Larios, E. Lunasin and E. S. Titi,
Global well-posedness for the 2D Boussinesq system with anisotropic viscosity and without heat diffusion, J. Differ. Equ., 9 (2013), 2636-2654.
doi: 10.1016/j.jde.2013.07.011. |
[13] |
C. Li and T. Hou,
Global well-posedness of the viscous Boussinesq equations, Discrete Contin. Dyn. S., 12 (2005), 1-12.
doi: 10.3934/dcds.2005.12.1. |
[14] |
J. Robinson, J. Rodrigo and W. Sadowski, The Three-Dimensional Navier-Stokes Equations: Classical Theory, Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge, 2016.
doi: 10.1017/CBO9781139095143. |
[15] |
K. Tosio and P. Gustavo,
Commutator estimates and the Euler and Navier-Stokes equations, Commun. Pure. Appl. Math., 41 (1988), 891-907.
doi: 10.1002/cpa.3160410704. |
[16] |
C. Wang and Z. Zhang,
Global well-posedness for the 2-D Boussinesq system with the temperature-dependent viscosity and thermal diffusivity, Adv. Math., 228 (2011), 43-62.
doi: 10.1016/j.aim.2011.05.008. |
[17] |
J. Wu, X. Xu, L. Xue and Z. Ye,
Regularity results for the 2D Boussinesq equations with critical or supercritical dissipation, Commun. Math. Sci., 14 (2016), 1963-1997.
doi: 10.4310/CMS.2016.v14.n7.a9. |
[18] |
J. Wu, X. Xu and Z. Ye, The 2D Boussinesq equations with fractional horizontal dissipation and thermal diffusion, Journal De Math$\acute{e}$matiques Pures Et Appliqu$\acute{e}$s, 115 (2018), 187–217.
doi: 10.1016/j.matpur.2018.01.006. |
[19] |
Z. Xiang and W. Yan,
Global regularity of solutions to the Boussinesq equations with fractional diffusion, Adv. Differ. Equ., 18 (2013), 1105-1128.
|
[20] |
K. Yamazaki,
On the global regularity of N-dimensional generalized Boussinesq system, Appl. Math., 60 (2015), 109-133.
doi: 10.1007/s10492-015-0087-5. |
[21] |
V. Yudovich, Non-stationary flows of an ideal incompressible fluid, Ž. Vyčisl. Mat. i Mat. Fiz, 3 (1963), 1032–1066. |
[22] |
Z. Ye,
A note on global well-posedness of solutions to Boussinesq equations with fractional dissipation, Acta Math. Sci., 35 (2015), 112-120.
doi: 10.1016/S0252-9602(14)60144-2. |
[23] |
Z. Ye, Remarks on the improved regularity criterion for the 2D Euler-Boussinesq equations with supercritical dissipation, Zeitschrift F$\ddot{u}$r Angewandte Mathematik Und Physik, 67 (2016), 149–156.
doi: 10.1007/s00033-016-0742-z. |
[24] |
Z. Ye,
On global well-posedness for the 3D Boussinesq equations with fractional partial dissipation, Appl. Math. Lett., 90 (2019), 1-7.
doi: 10.1016/j.aml.2018.10.009. |
[25] |
X. Zhai, B. Dong and Z. Chen,
Global well-posedness for 2D Boussinesq system with the temperature-dependent viscosity and supercritical dissipation, J. Differ. Equ., 267 (2019), 364-387.
doi: 10.1016/j.jde.2019.01.011. |
show all references
References:
[1] |
H. Abidi and P. Zhang,
On the global well-posedness of 2-D Boussinesq system with variable viscosity, Adv. Math, 305 (2017), 1202-1249.
doi: 10.1016/j.aim.2016.09.036. |
[2] |
N. Boardman, R. H. Ji, H. Qiu and J. Wu,
Uniqueness of weak solutions to the Boussinesq equations without thermal diffusion, Commun. Math. Sci, 17 (2019), 1595-1624.
doi: 10.4310/CMS.2019.v17.n6.a5. |
[3] |
C. Cao and J. Wu,
Global Regularity for the Two-Dimensional Anisotropic Boussinesq Equations with Vertical Dissipation, Archive for Rational Mechanics & Analysis, 208 (2013), 985-1004.
doi: 10.1007/s00205-013-0610-3. |
[4] |
D. Chae,
Global regularity for the 2D Boussinesq equations with partial viscosity terms, Adv. Math., 203 (2006), 497-513.
doi: 10.1016/j.aim.2005.05.001. |
[5] |
L. He,
Smoothing estimates of 2D incompressible Navier-Stokes equations in bounded domains with applications, J. Funct. Anal., 262 (2012), 3430-3464.
doi: 10.1016/j.jfa.2012.01.017. |
[6] |
T. Hmidi and S. Keraani,
On the global well-posedness of the Boussinesq system with zero viscosity, Indiana Univ. Math. J, 58 (2009), 1591-1618.
doi: 10.1512/iumj.2009.58.3590. |
[7] |
L. Jin, J. Fan, G. Nakamura and Y. Zhou,
Partial vanishing viscosity limit for the 2D Boussinesq system with a slip boundary condition, Bound. Value Probl., 2012 (2012), 20-24.
doi: 10.1186/1687-2770-2012-20. |
[8] |
Q. Jiu and H. Yu,
Global well-posedness for 3D generalized Navier-Stokes-Boussinesq equations, Acta Mathematicae Applicatae Sinica, English Series, 32 (2016), 1-16.
doi: 10.1007/s10255-016-0539-z. |
[9] |
I. Kukavica and W. Wang,
Global Sobolev persistence for the fractional Boussinesq equations with zero diffusivity, Pure Appl. Funct. Anal., 5 (2020), 27-45.
|
[10] |
I. Kukavica and W. Wang,
Long time behavior of solutions to the 2D Boussinesq equations with zero diffusivity, J. Dyn. Differ. Equ., 32 (2020), 2061-2077.
doi: 10.1007/s10884-019-09802-w. |
[11] |
M. Lai, R. Pan and K. Zhao,
Initial Boundary Value Problem for Two-Dimensional Viscous Boussinesq Equations, Arch. Ration. Mech. Anal., 199 (2011), 739-760.
doi: 10.1007/s00205-010-0357-z. |
[12] |
A. Larios, E. Lunasin and E. S. Titi,
Global well-posedness for the 2D Boussinesq system with anisotropic viscosity and without heat diffusion, J. Differ. Equ., 9 (2013), 2636-2654.
doi: 10.1016/j.jde.2013.07.011. |
[13] |
C. Li and T. Hou,
Global well-posedness of the viscous Boussinesq equations, Discrete Contin. Dyn. S., 12 (2005), 1-12.
doi: 10.3934/dcds.2005.12.1. |
[14] |
J. Robinson, J. Rodrigo and W. Sadowski, The Three-Dimensional Navier-Stokes Equations: Classical Theory, Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge, 2016.
doi: 10.1017/CBO9781139095143. |
[15] |
K. Tosio and P. Gustavo,
Commutator estimates and the Euler and Navier-Stokes equations, Commun. Pure. Appl. Math., 41 (1988), 891-907.
doi: 10.1002/cpa.3160410704. |
[16] |
C. Wang and Z. Zhang,
Global well-posedness for the 2-D Boussinesq system with the temperature-dependent viscosity and thermal diffusivity, Adv. Math., 228 (2011), 43-62.
doi: 10.1016/j.aim.2011.05.008. |
[17] |
J. Wu, X. Xu, L. Xue and Z. Ye,
Regularity results for the 2D Boussinesq equations with critical or supercritical dissipation, Commun. Math. Sci., 14 (2016), 1963-1997.
doi: 10.4310/CMS.2016.v14.n7.a9. |
[18] |
J. Wu, X. Xu and Z. Ye, The 2D Boussinesq equations with fractional horizontal dissipation and thermal diffusion, Journal De Math$\acute{e}$matiques Pures Et Appliqu$\acute{e}$s, 115 (2018), 187–217.
doi: 10.1016/j.matpur.2018.01.006. |
[19] |
Z. Xiang and W. Yan,
Global regularity of solutions to the Boussinesq equations with fractional diffusion, Adv. Differ. Equ., 18 (2013), 1105-1128.
|
[20] |
K. Yamazaki,
On the global regularity of N-dimensional generalized Boussinesq system, Appl. Math., 60 (2015), 109-133.
doi: 10.1007/s10492-015-0087-5. |
[21] |
V. Yudovich, Non-stationary flows of an ideal incompressible fluid, Ž. Vyčisl. Mat. i Mat. Fiz, 3 (1963), 1032–1066. |
[22] |
Z. Ye,
A note on global well-posedness of solutions to Boussinesq equations with fractional dissipation, Acta Math. Sci., 35 (2015), 112-120.
doi: 10.1016/S0252-9602(14)60144-2. |
[23] |
Z. Ye, Remarks on the improved regularity criterion for the 2D Euler-Boussinesq equations with supercritical dissipation, Zeitschrift F$\ddot{u}$r Angewandte Mathematik Und Physik, 67 (2016), 149–156.
doi: 10.1007/s00033-016-0742-z. |
[24] |
Z. Ye,
On global well-posedness for the 3D Boussinesq equations with fractional partial dissipation, Appl. Math. Lett., 90 (2019), 1-7.
doi: 10.1016/j.aml.2018.10.009. |
[25] |
X. Zhai, B. Dong and Z. Chen,
Global well-posedness for 2D Boussinesq system with the temperature-dependent viscosity and supercritical dissipation, J. Differ. Equ., 267 (2019), 364-387.
doi: 10.1016/j.jde.2019.01.011. |
[1] |
Yingdan Ji, Wen Tan. Global well-posedness of a 3D Stokes-Magneto equations with fractional magnetic diffusion. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3271-3278. doi: 10.3934/dcdsb.2020227 |
[2] |
Tadahiro Oh, Yuzhao Wang. On global well-posedness of the modified KdV equation in modulation spaces. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2971-2992. doi: 10.3934/dcds.2020393 |
[3] |
Tayeb Hadj Kaddour, Michael Reissig. Global well-posedness for effectively damped wave models with nonlinear memory. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021057 |
[4] |
Andreia Chapouto. A remark on the well-posedness of the modified KdV equation in the Fourier-Lebesgue spaces. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3915-3950. doi: 10.3934/dcds.2021022 |
[5] |
Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2699-2723. doi: 10.3934/dcds.2020382 |
[6] |
Pengyan Ding, Zhijian Yang. Well-posedness and attractor for a strongly damped wave equation with supercritical nonlinearity on $ \mathbb{R}^{N} $. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1059-1076. doi: 10.3934/cpaa.2021006 |
[7] |
Mario Bukal. Well-posedness and convergence of a numerical scheme for the corrected Derrida-Lebowitz-Speer-Spohn equation using the Hellinger distance. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3389-3414. doi: 10.3934/dcds.2021001 |
[8] |
Abraham Sylla. Influence of a slow moving vehicle on traffic: Well-posedness and approximation for a mildly nonlocal model. Networks & Heterogeneous Media, 2021, 16 (2) : 221-256. doi: 10.3934/nhm.2021005 |
[9] |
Cheng Wang. Convergence analysis of Fourier pseudo-spectral schemes for three-dimensional incompressible Navier-Stokes equations. Electronic Research Archive, , () : -. doi: 10.3934/era.2021019 |
[10] |
Simone Cacace, Maurizio Falcone. A dynamic domain decomposition for the eikonal-diffusion equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 109-123. doi: 10.3934/dcdss.2016.9.109 |
[11] |
Yongqiang Fu, Xiaoju Zhang. Global existence and asymptotic behavior of weak solutions for time-space fractional Kirchhoff-type diffusion equations. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021091 |
[12] |
Zhouxin Li, Yimin Zhang. Ground states for a class of quasilinear Schrödinger equations with vanishing potentials. Communications on Pure & Applied Analysis, 2021, 20 (2) : 933-954. doi: 10.3934/cpaa.2020298 |
[13] |
Hai-Liang Li, Tong Yang, Mingying Zhong. Diffusion limit of the Vlasov-Poisson-Boltzmann system. Kinetic & Related Models, 2021, 14 (2) : 211-255. doi: 10.3934/krm.2021003 |
[14] |
Jaume Llibre, Claudia Valls. Rational limit cycles of Abel equations. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1077-1089. doi: 10.3934/cpaa.2021007 |
[15] |
Liangliang Ma. Stability of hydrostatic equilibrium to the 2D fractional Boussinesq equations. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021068 |
[16] |
Jose Anderson Cardoso, Patricio Cerda, Denilson Pereira, Pedro Ubilla. Schrödinger equations with vanishing potentials involving Brezis-Kamin type problems. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2947-2969. doi: 10.3934/dcds.2020392 |
[17] |
Meng-Xue Chang, Bang-Sheng Han, Xiao-Ming Fan. Global dynamics of the solution for a bistable reaction diffusion equation with nonlocal effect. Electronic Research Archive, , () : -. doi: 10.3934/era.2021024 |
[18] |
Wei Wang, Wanbiao Ma, Xiulan Lai. Sufficient conditions for global dynamics of a viral infection model with nonlinear diffusion. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3989-4011. doi: 10.3934/dcdsb.2020271 |
[19] |
Lucas C. F. Ferreira, Jhean E. Pérez-López, Élder J. Villamizar-Roa. On the product in Besov-Lorentz-Morrey spaces and existence of solutions for the stationary Boussinesq equations. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2423-2439. doi: 10.3934/cpaa.2018115 |
[20] |
Vo Anh Khoa, Thi Kim Thoa Thieu, Ekeoma Rowland Ijioma. On a pore-scale stationary diffusion equation: Scaling effects and correctors for the homogenization limit. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2451-2477. doi: 10.3934/dcdsb.2020190 |
2019 Impact Factor: 1.105
Tools
Article outline
[Back to Top]