-
Previous Article
Stability of rarefaction wave for the compressible non-isentropic Navier-Stokes-Maxwell equations
- CPAA Home
- This Issue
-
Next Article
Classification of positive solutions for fully nonlinear elliptic equations in unbounded cylinders
Gromov-Hausdorff stability of reaction diffusion equations with Robin boundary conditions under perturbations of the domain and equation
1. | Department of Mathematics, Sungkyunkwan University, Suwon 16419, Korea |
2. | Department of Mathematics, Chungnam National University, Daejeon 34134, Korea |
In this paper, we prove the continuity of global attractors and the Gromov-Hausdorff stability of reaction diffusion equations with Robin boundary conditions under perturbations of the domain and equation if every equilibrium of the unperturbed equation is hyperbolic.
References:
[1] |
G. S. Aragão, A. L. Pereira and M. C. Pereira,
Attractors for a nonlinear parabolic problem with terms concentrating on the boundary, J. Dynam. Differ. Equ., 26 (2014), 871-888.
doi: 10.1007/s10884-014-9412-z. |
[2] |
A. Arbieto and C. A. Morales,
Topological stability from Gromov-Hausdorff viewpoint, Discrete Contin. Dyn. Syst., 37 (2017), 3531-3544.
doi: 10.3934/dcds.2017151. |
[3] |
J. M. Arrieta and A. N. Carvalho,
Spectral convergence and nonlinear dynamics of reaction-diffusion equations under perturbations of the domain, J. Differ. Equ., 199 (2004), 143-178.
doi: 10.1016/j.jde.2003.09.004. |
[4] |
J. M. Arrieta, A. N. Carvalho and G. Lozada-Cruz,
Dynamics in dumbbell domains. III. Continuity of attractors, J. Differ. Equ., 247 (2009), 225-259.
doi: 10.1016/j.jde.2008.12.014. |
[5] |
J. M. Arrieta, A. N. Carvalho and A. Rodriguez-Bernal, Attractors for parabolic problems with nonlinear boundary condition. Uniform bounds, Commun. Partial Differ. Equ., 25 (2000) 1–37.
doi: 10.1080/03605300008821506. |
[6] |
A. V. Babin and S. Yu. Pilyugin,
Continuous dependence of an attractor on the shape of domain, J. Math. Sci., 87 (1997), 3304-3310.
doi: 10.1007/BF02355582. |
[7] |
P. S. Barbosa and A. L. Pereira,
Continuity of attractors for $C^1$ perturbations of a smooth domain, Electron. J. Differ. Equ., 2020 (2020), 1-31.
|
[8] |
P. S. Barbosa, A. L. Pereira and M. C. Pereira,
Continuity of attractors for a family of $C^1$ perturbations of the square, Ann. Mat. Pura Appl., 196 (2017), 1365-1398.
doi: 10.1007/s10231-016-0620-5. |
[9] |
L. A. F. De Oliveira, A. L. Pereira and M. C. Pereira,
Continuity of attractors for a reaction-diffusion problem with respect to variations of the domain, Electron. J. Differ. Equ., 100 (2005), 1-18.
|
[10] |
P. Grisvard, Elliptic Problems in Nonsmooth Domains, Society for Industrial and Applied Mathematics, Philadelphia, 2011.
doi: 10.1137/1.9781611972030.ch1. |
[11] |
D. B. Henry, Geometric Theory of Semilinear Parabolic Equations, in: Lecture Notes in Mathematics, Springer, Berlin, 1981. |
[12] | D. B. Henry, Perturbation of the Boundary for Boundary Value Problems, Cambridge Univ. Press, 2005. Google Scholar |
[13] |
M. Hurley,
Fixed points of topological stable flows, Trans. Amer. Math. Soc., 294 (1986), 625-633.
doi: 10.2307/2000204. |
[14] |
J. A. Langa, J. C. Robinson, A. Suárez and A. Vidal-López,
The stability of attractors for non-autonomous perturbations of gradient-like systems, J. Differ. Equ., 234 (2007), 607-625.
doi: 10.1016/j.jde.2006.11.016. |
[15] |
J. Lee, N. Nguyen and V. M. Toi,
Gromov-Hausdorff stability of global attractors of reaction diffusion equations under perturbations of domain, J. Differ. Equ., 269 (2020), 125-147.
doi: 10.1016/j.jde.2019.11.097. |
[16] |
D. S. Li and P. E. Kloeden,
Robustness of asymptotic stability to small time delays, Discrete Contin. Dyn. S., 13 (2005), 1007-1034.
doi: 10.3934/dcds.2005.13.1007. |
[17] |
A. L. Pereira and M. C. Pereira,
Continuity of attractors for a reaction-diffusion problem with nonlinear boundary conditions with respect to variations of the domain, J. Differ. Equ., 239 (2007), 343-370.
doi: 10.1016/j.jde.2007.05.018. |
[18] |
J. C. Robinson, Infinite-Dimensional Dynamical Systems, Cambridge Univ. Press, 2001.
doi: 10.1007/978-94-010-0732-0.![]() ![]() |
[19] |
R. F. Thomas,
Topological stability: Some fundamental properties, J. Differ. Equ., 59 (1985), 103-122.
doi: 10.1016/0022-0396(85)90140-8. |
show all references
References:
[1] |
G. S. Aragão, A. L. Pereira and M. C. Pereira,
Attractors for a nonlinear parabolic problem with terms concentrating on the boundary, J. Dynam. Differ. Equ., 26 (2014), 871-888.
doi: 10.1007/s10884-014-9412-z. |
[2] |
A. Arbieto and C. A. Morales,
Topological stability from Gromov-Hausdorff viewpoint, Discrete Contin. Dyn. Syst., 37 (2017), 3531-3544.
doi: 10.3934/dcds.2017151. |
[3] |
J. M. Arrieta and A. N. Carvalho,
Spectral convergence and nonlinear dynamics of reaction-diffusion equations under perturbations of the domain, J. Differ. Equ., 199 (2004), 143-178.
doi: 10.1016/j.jde.2003.09.004. |
[4] |
J. M. Arrieta, A. N. Carvalho and G. Lozada-Cruz,
Dynamics in dumbbell domains. III. Continuity of attractors, J. Differ. Equ., 247 (2009), 225-259.
doi: 10.1016/j.jde.2008.12.014. |
[5] |
J. M. Arrieta, A. N. Carvalho and A. Rodriguez-Bernal, Attractors for parabolic problems with nonlinear boundary condition. Uniform bounds, Commun. Partial Differ. Equ., 25 (2000) 1–37.
doi: 10.1080/03605300008821506. |
[6] |
A. V. Babin and S. Yu. Pilyugin,
Continuous dependence of an attractor on the shape of domain, J. Math. Sci., 87 (1997), 3304-3310.
doi: 10.1007/BF02355582. |
[7] |
P. S. Barbosa and A. L. Pereira,
Continuity of attractors for $C^1$ perturbations of a smooth domain, Electron. J. Differ. Equ., 2020 (2020), 1-31.
|
[8] |
P. S. Barbosa, A. L. Pereira and M. C. Pereira,
Continuity of attractors for a family of $C^1$ perturbations of the square, Ann. Mat. Pura Appl., 196 (2017), 1365-1398.
doi: 10.1007/s10231-016-0620-5. |
[9] |
L. A. F. De Oliveira, A. L. Pereira and M. C. Pereira,
Continuity of attractors for a reaction-diffusion problem with respect to variations of the domain, Electron. J. Differ. Equ., 100 (2005), 1-18.
|
[10] |
P. Grisvard, Elliptic Problems in Nonsmooth Domains, Society for Industrial and Applied Mathematics, Philadelphia, 2011.
doi: 10.1137/1.9781611972030.ch1. |
[11] |
D. B. Henry, Geometric Theory of Semilinear Parabolic Equations, in: Lecture Notes in Mathematics, Springer, Berlin, 1981. |
[12] | D. B. Henry, Perturbation of the Boundary for Boundary Value Problems, Cambridge Univ. Press, 2005. Google Scholar |
[13] |
M. Hurley,
Fixed points of topological stable flows, Trans. Amer. Math. Soc., 294 (1986), 625-633.
doi: 10.2307/2000204. |
[14] |
J. A. Langa, J. C. Robinson, A. Suárez and A. Vidal-López,
The stability of attractors for non-autonomous perturbations of gradient-like systems, J. Differ. Equ., 234 (2007), 607-625.
doi: 10.1016/j.jde.2006.11.016. |
[15] |
J. Lee, N. Nguyen and V. M. Toi,
Gromov-Hausdorff stability of global attractors of reaction diffusion equations under perturbations of domain, J. Differ. Equ., 269 (2020), 125-147.
doi: 10.1016/j.jde.2019.11.097. |
[16] |
D. S. Li and P. E. Kloeden,
Robustness of asymptotic stability to small time delays, Discrete Contin. Dyn. S., 13 (2005), 1007-1034.
doi: 10.3934/dcds.2005.13.1007. |
[17] |
A. L. Pereira and M. C. Pereira,
Continuity of attractors for a reaction-diffusion problem with nonlinear boundary conditions with respect to variations of the domain, J. Differ. Equ., 239 (2007), 343-370.
doi: 10.1016/j.jde.2007.05.018. |
[18] |
J. C. Robinson, Infinite-Dimensional Dynamical Systems, Cambridge Univ. Press, 2001.
doi: 10.1007/978-94-010-0732-0.![]() ![]() |
[19] |
R. F. Thomas,
Topological stability: Some fundamental properties, J. Differ. Equ., 59 (1985), 103-122.
doi: 10.1016/0022-0396(85)90140-8. |
[1] |
Yizhuo Wang, Shangjiang Guo. A SIS reaction-diffusion model with a free boundary condition and nonhomogeneous coefficients. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1627-1652. doi: 10.3934/dcdsb.2018223 |
[2] |
Meng-Xue Chang, Bang-Sheng Han, Xiao-Ming Fan. Global dynamics of the solution for a bistable reaction diffusion equation with nonlocal effect. Electronic Research Archive, , () : -. doi: 10.3934/era.2021024 |
[3] |
Vandana Sharma. Global existence and uniform estimates of solutions to reaction diffusion systems with mass transport type boundary conditions. Communications on Pure & Applied Analysis, 2021, 20 (3) : 955-974. doi: 10.3934/cpaa.2021001 |
[4] |
Simone Cacace, Maurizio Falcone. A dynamic domain decomposition for the eikonal-diffusion equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 109-123. doi: 10.3934/dcdss.2016.9.109 |
[5] |
Guangying Lv, Jinlong Wei, Guang-an Zou. Noise and stability in reaction-diffusion equations. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021005 |
[6] |
Weihua Jiang, Xun Cao, Chuncheng Wang. Turing instability and pattern formations for reaction-diffusion systems on 2D bounded domain. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021085 |
[7] |
Bernold Fiedler, Carlos Rocha, Matthias Wolfrum. Sturm global attractors for $S^1$-equivariant parabolic equations. Networks & Heterogeneous Media, 2012, 7 (4) : 617-659. doi: 10.3934/nhm.2012.7.617 |
[8] |
Mohamed Ouzahra. Approximate controllability of the semilinear reaction-diffusion equation governed by a multiplicative control. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021081 |
[9] |
Bo Duan, Zhengce Zhang. A reaction-diffusion-advection two-species competition system with a free boundary in heterogeneous environment. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021067 |
[10] |
Lin Yang, Yejuan Wang, Tomás Caraballo. Regularity of global attractors and exponential attractors for $ 2 $D quasi-geostrophic equations with fractional dissipation. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021093 |
[11] |
Manil T. Mohan, Arbaz Khan. On the generalized Burgers-Huxley equation: Existence, uniqueness, regularity, global attractors and numerical studies. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3943-3988. doi: 10.3934/dcdsb.2020270 |
[12] |
Carlos Fresneda-Portillo, Sergey E. Mikhailov. Analysis of Boundary-Domain Integral Equations to the mixed BVP for a compressible stokes system with variable viscosity. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3059-3088. doi: 10.3934/cpaa.2019137 |
[13] |
Sergey E. Mikhailov, Carlos F. Portillo. Boundary-Domain Integral Equations equivalent to an exterior mixed BVP for the variable-viscosity compressible Stokes PDEs. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1103-1133. doi: 10.3934/cpaa.2021009 |
[14] |
Soonki Hong, Seonhee Lim. Martin boundary of brownian motion on Gromov hyperbolic metric graphs. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3725-3757. doi: 10.3934/dcds.2021014 |
[15] |
Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825 |
[16] |
Nabahats Dib-Baghdadli, Rabah Labbas, Tewfik Mahdjoub, Ahmed Medeghri. On some reaction-diffusion equations generated by non-domiciliated triatominae, vectors of Chagas disease. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021004 |
[17] |
Yingdan Ji, Wen Tan. Global well-posedness of a 3D Stokes-Magneto equations with fractional magnetic diffusion. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3271-3278. doi: 10.3934/dcdsb.2020227 |
[18] |
Yongqiang Fu, Xiaoju Zhang. Global existence and asymptotic behavior of weak solutions for time-space fractional Kirchhoff-type diffusion equations. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021091 |
[19] |
Mario Bukal. Well-posedness and convergence of a numerical scheme for the corrected Derrida-Lebowitz-Speer-Spohn equation using the Hellinger distance. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3389-3414. doi: 10.3934/dcds.2021001 |
[20] |
Carlos Gutierrez, Nguyen Van Chau. A remark on an eigenvalue condition for the global injectivity of differentiable maps of $R^2$. Discrete & Continuous Dynamical Systems, 2007, 17 (2) : 397-402. doi: 10.3934/dcds.2007.17.397 |
2019 Impact Factor: 1.105
Tools
Metrics
Other articles
by authors
[Back to Top]