- Previous Article
- CPAA Home
- This Issue
-
Next Article
Gromov-Hausdorff stability of reaction diffusion equations with Robin boundary conditions under perturbations of the domain and equation
Stability of rarefaction wave for the compressible non-isentropic Navier-Stokes-Maxwell equations
1. | School of Mathematics, South China University of Technology, Guangzhou 510641, China |
2. | School of Mathematical Sciences, Huaqiao University, Quanzhou 362021, China |
We study the large-time asymptotic behavior of solutions toward the rarefaction wave of the compressible non-isentropic Navier-Stokes equations coupling with Maxwell equations under some small perturbations of initial data and also under the assumption that the dielectric constant is bounded. For that, the dissipative structure of this hyperbolic-parabolic system is studied to include the effect of the electromagnetic field into the viscous fluid and turns out to be more complicated than that in the simpler compressible Navier-Stokes system. The proof of the main result is based on the elementary $ L^2 $ energy methods.
References:
[1] |
M. C. Dafermos, Hyperbolic Conservation Laws in Continuum Physics, 4nd edition, Springer-Verlag, Berlin, 2016.
doi: 10.1007/978-3-662-49451-6. |
[2] |
R. J. Duan,
Green's function and large time behavior of the Navier-Stokes-Maxwell system, Anal. Appl., 10 (2012), 133-197.
doi: 10.1142/S0219530512500078. |
[3] |
R. J. Duan, S. Q. Liu, H. Y. Yin and C. J. Zhu,
Stability of the rarefaction wave for a two-fluid plasma model with diffusion, Sci. China Math., 59 (2016), 67-84.
doi: 10.1007/s11425-015-5059-4. |
[4] |
J. S. Fan and Y. X. Hu,
Uniform existence of the 1-d complete equations for an electromagnetic fluid, J. Math. Anal. Appl., 419 (2014), 1-9.
doi: 10.1016/j.jmaa.2014.04.052. |
[5] |
J. S. Fan and Y. B. Ou,
Uniform existence of the 1-D full equations for a thermo-radiative electromagnetic fluid, Nonlinear Anal., 106 (2014), 151-158.
doi: 10.1016/j.na.2014.04.018. |
[6] |
F. M. Huang, J. Li and A. Matsumura,
Asymptotic stability of combination of viscous contact wave with rarefaction waves for one-dimensional compressible Navier-Stokes system, Arch. Ration. Mech. Anal., 197 (2010), 89-116.
doi: 10.1007/s00205-009-0267-0. |
[7] |
F. M. Huang, A. Matsumura and Z. P. Xin,
Stability of contact discontinuities for the 1-D compressible Navier-Stokes equations, Arch. Ration. Mech. Anal., 179 (2006), 55-77.
doi: 10.1007/s00205-005-0380-7. |
[8] |
F. M. Huang and T. Wang,
Stability of superposition of viscous contact wave and rarefaction waves for compressible Navier-Stokes system, Indiana Univ. Math. J., 65 (2016), 1833-1875.
doi: 10.1512/iumj.2016.65.5914. |
[9] |
F. M. Huang, Z. P. Xin and T. Yang,
Contact discontinuity with general perturbations for gas motions, Adv. Math., 219 (2008), 1246-1297.
doi: 10.1016/j.aim.2008.06.014. |
[10] |
Y. T. Huang and H. X. Liu,
Stability of rarefaction wave for a macroscopic model derived from the Vlasov-Maxwell-Boltzmann system, Acta Math. Sci. Ser. B, 38 (2018), 857-888.
doi: 10.1016/S0252-9602(18)30789-6. |
[11] |
I. Imai,
General Principles of Magneto-Fluid Dynamics. In: Magneto-Fulid Dynamics, Suppl. Prog. Theor. Phys., 24 (1962), 1-34.
|
[12] |
S. Jiang and F. C. Li,
Convergence of the complete electromagnetic fluid system to the full compressible magnetohydrodynamic equations, Asymptot. Anal., 95 (2015), 161-185.
doi: 10.3233/ASY-151321. |
[13] |
T. Kato,
The Cauchy problem for quasi-linear symmetric hyperbolic systems, Arch. Ration. Mech. Anal., 58 (1975), 181-205.
doi: 10.1007/BF00280740. |
[14] |
S. Kawashima,
Smooth global solutions for two-dimensional equations of electromagnetofluid dynamics, Japan J. Appl. Math., 1 (1984), 207-222.
doi: 10.1007/BF03167869. |
[15] |
S. Kawashima and A. Matsumura,
Asymptotic stability of traveling wave solutions of systems for one-dimensional gas motion, Commun. Math. Phys., 101 (1985), 97-127.
|
[16] |
S. Kawashima, A. Matsumura and K. Nishihara,
Asymptotic behavior of solutions for the equations of a viscous heat-conductive gas, Proc. Japan Acad. Ser. Math. Sci., 62 (1986), 249-252.
|
[17] |
S. Kawashima and Y. Shizuta,
Magnetohydrodynamic approximation of the complete equations for an electromagnetic fluid, Tsukuba J. Math., 10 (1986), 131-149.
doi: 10.21099/tkbjm/1496160397. |
[18] |
S. Kawashima and Y. Shizuta,
Magnetohydrodynamic approximation of the complete equations for an electromagnetic fluid. II, Proc. Japan Acad. Ser. A Math. Sci., 62 (1986), 181-184.
|
[19] |
T. P. Liu,
Nonlinear stability of shock waves for viscous conservation laws, Mem. Amer. Math. Soc., 56 (1985), 1-108.
doi: 10.1090/memo/0328. |
[20] |
T. P. Liu,
Shock waves for compressible Navier-Stokes equations are stable, Commun. Pure Appl. Math., 39 (1986), 565-594.
doi: 10.1002/cpa.3160390502. |
[21] |
T. P. Liu and Z. P. Xin,
Nonlinear stability of rarefaction waves for compressible Navier-Stokes equations, Commun. Math. Phys., 118 (1988), 451-465.
|
[22] |
F. Q. Luo, H. C. Yao and C. J. Zhu, Stability of rarefaction wave for isentropic compressible Navier-Stokes-Maxwell equations, Nonlinear Anal. Real World Appl., 59 (2021), 103234.
doi: 10.1016/j.nonrwa.2020.103234. |
[23] |
T. Luo, H. Y. Yin and C. J. Zhu,
Stability of the composite wave for compressible Navier-Stokes/Allen-Cahn system, Math. Models Methods Appl. Sci., 30 (2020), 343-385.
doi: 10.1142/S0218202520500098. |
[24] |
N. Masmoudi,
Global well posedness for the Maxwell-Navier-Stokes system in 2D, J. Math. Pures Appl., 93 (2010), 559-571.
doi: 10.1016/j.matpur.2009.08.007. |
[25] |
A. Matsumura, Waves in compressible fluids: viscous shock, rarefaction, and contact waves, in Handbook of Mathematical Analysis in Mechanics of Viscous Fluids, Springer, Cham, (2018), 2495–2548.
doi: 10.1007/978-3-319-13344-7_60. |
[26] |
A. Matsumura and K. Nishihara,
Asymptotics toward the rarefaction waves of the solutions of a one-dimensional model system for compressible viscous gas, Japan J. Appl. Math., 3 (1986), 1-13.
doi: 10.1007/BF03167088. |
[27] |
D. Mihalas and W. B. Mihalas, Foundations of Radiation Hydrodynamics, Oxford Univ. Press, 1984.
![]() |
[28] |
I. S. Pai, Magnetogasdynamics and Plasma Dynamics, Springer-Verlag, 1962. |
[29] |
L. Z. Ruan, H. Y. Yin and C. J. Zhu,
Stability of the superposition of rarefaction wave and contact discontinuity for the non-isentropic Navier-Stokes-Poisson system, Math. Methods Appl. Sci., 40 (2017), 2784-2810.
doi: 10.1002/mma.4198. |
[30] |
J. Smoller, Shock Waves and Reaction-Diffusion Equations, 2nd edition, Springer-Verlag, New York, 1994.
doi: 10.1007/978-1-4612-0873-0. |
[31] |
X. Xu,
Asymptotic behavior of solutions to an electromagnetic fluid model, Z. Angew. Math. Phys., 69 (2018), 1-19.
doi: 10.1007/s00033-018-0945-6. |
show all references
References:
[1] |
M. C. Dafermos, Hyperbolic Conservation Laws in Continuum Physics, 4nd edition, Springer-Verlag, Berlin, 2016.
doi: 10.1007/978-3-662-49451-6. |
[2] |
R. J. Duan,
Green's function and large time behavior of the Navier-Stokes-Maxwell system, Anal. Appl., 10 (2012), 133-197.
doi: 10.1142/S0219530512500078. |
[3] |
R. J. Duan, S. Q. Liu, H. Y. Yin and C. J. Zhu,
Stability of the rarefaction wave for a two-fluid plasma model with diffusion, Sci. China Math., 59 (2016), 67-84.
doi: 10.1007/s11425-015-5059-4. |
[4] |
J. S. Fan and Y. X. Hu,
Uniform existence of the 1-d complete equations for an electromagnetic fluid, J. Math. Anal. Appl., 419 (2014), 1-9.
doi: 10.1016/j.jmaa.2014.04.052. |
[5] |
J. S. Fan and Y. B. Ou,
Uniform existence of the 1-D full equations for a thermo-radiative electromagnetic fluid, Nonlinear Anal., 106 (2014), 151-158.
doi: 10.1016/j.na.2014.04.018. |
[6] |
F. M. Huang, J. Li and A. Matsumura,
Asymptotic stability of combination of viscous contact wave with rarefaction waves for one-dimensional compressible Navier-Stokes system, Arch. Ration. Mech. Anal., 197 (2010), 89-116.
doi: 10.1007/s00205-009-0267-0. |
[7] |
F. M. Huang, A. Matsumura and Z. P. Xin,
Stability of contact discontinuities for the 1-D compressible Navier-Stokes equations, Arch. Ration. Mech. Anal., 179 (2006), 55-77.
doi: 10.1007/s00205-005-0380-7. |
[8] |
F. M. Huang and T. Wang,
Stability of superposition of viscous contact wave and rarefaction waves for compressible Navier-Stokes system, Indiana Univ. Math. J., 65 (2016), 1833-1875.
doi: 10.1512/iumj.2016.65.5914. |
[9] |
F. M. Huang, Z. P. Xin and T. Yang,
Contact discontinuity with general perturbations for gas motions, Adv. Math., 219 (2008), 1246-1297.
doi: 10.1016/j.aim.2008.06.014. |
[10] |
Y. T. Huang and H. X. Liu,
Stability of rarefaction wave for a macroscopic model derived from the Vlasov-Maxwell-Boltzmann system, Acta Math. Sci. Ser. B, 38 (2018), 857-888.
doi: 10.1016/S0252-9602(18)30789-6. |
[11] |
I. Imai,
General Principles of Magneto-Fluid Dynamics. In: Magneto-Fulid Dynamics, Suppl. Prog. Theor. Phys., 24 (1962), 1-34.
|
[12] |
S. Jiang and F. C. Li,
Convergence of the complete electromagnetic fluid system to the full compressible magnetohydrodynamic equations, Asymptot. Anal., 95 (2015), 161-185.
doi: 10.3233/ASY-151321. |
[13] |
T. Kato,
The Cauchy problem for quasi-linear symmetric hyperbolic systems, Arch. Ration. Mech. Anal., 58 (1975), 181-205.
doi: 10.1007/BF00280740. |
[14] |
S. Kawashima,
Smooth global solutions for two-dimensional equations of electromagnetofluid dynamics, Japan J. Appl. Math., 1 (1984), 207-222.
doi: 10.1007/BF03167869. |
[15] |
S. Kawashima and A. Matsumura,
Asymptotic stability of traveling wave solutions of systems for one-dimensional gas motion, Commun. Math. Phys., 101 (1985), 97-127.
|
[16] |
S. Kawashima, A. Matsumura and K. Nishihara,
Asymptotic behavior of solutions for the equations of a viscous heat-conductive gas, Proc. Japan Acad. Ser. Math. Sci., 62 (1986), 249-252.
|
[17] |
S. Kawashima and Y. Shizuta,
Magnetohydrodynamic approximation of the complete equations for an electromagnetic fluid, Tsukuba J. Math., 10 (1986), 131-149.
doi: 10.21099/tkbjm/1496160397. |
[18] |
S. Kawashima and Y. Shizuta,
Magnetohydrodynamic approximation of the complete equations for an electromagnetic fluid. II, Proc. Japan Acad. Ser. A Math. Sci., 62 (1986), 181-184.
|
[19] |
T. P. Liu,
Nonlinear stability of shock waves for viscous conservation laws, Mem. Amer. Math. Soc., 56 (1985), 1-108.
doi: 10.1090/memo/0328. |
[20] |
T. P. Liu,
Shock waves for compressible Navier-Stokes equations are stable, Commun. Pure Appl. Math., 39 (1986), 565-594.
doi: 10.1002/cpa.3160390502. |
[21] |
T. P. Liu and Z. P. Xin,
Nonlinear stability of rarefaction waves for compressible Navier-Stokes equations, Commun. Math. Phys., 118 (1988), 451-465.
|
[22] |
F. Q. Luo, H. C. Yao and C. J. Zhu, Stability of rarefaction wave for isentropic compressible Navier-Stokes-Maxwell equations, Nonlinear Anal. Real World Appl., 59 (2021), 103234.
doi: 10.1016/j.nonrwa.2020.103234. |
[23] |
T. Luo, H. Y. Yin and C. J. Zhu,
Stability of the composite wave for compressible Navier-Stokes/Allen-Cahn system, Math. Models Methods Appl. Sci., 30 (2020), 343-385.
doi: 10.1142/S0218202520500098. |
[24] |
N. Masmoudi,
Global well posedness for the Maxwell-Navier-Stokes system in 2D, J. Math. Pures Appl., 93 (2010), 559-571.
doi: 10.1016/j.matpur.2009.08.007. |
[25] |
A. Matsumura, Waves in compressible fluids: viscous shock, rarefaction, and contact waves, in Handbook of Mathematical Analysis in Mechanics of Viscous Fluids, Springer, Cham, (2018), 2495–2548.
doi: 10.1007/978-3-319-13344-7_60. |
[26] |
A. Matsumura and K. Nishihara,
Asymptotics toward the rarefaction waves of the solutions of a one-dimensional model system for compressible viscous gas, Japan J. Appl. Math., 3 (1986), 1-13.
doi: 10.1007/BF03167088. |
[27] |
D. Mihalas and W. B. Mihalas, Foundations of Radiation Hydrodynamics, Oxford Univ. Press, 1984.
![]() |
[28] |
I. S. Pai, Magnetogasdynamics and Plasma Dynamics, Springer-Verlag, 1962. |
[29] |
L. Z. Ruan, H. Y. Yin and C. J. Zhu,
Stability of the superposition of rarefaction wave and contact discontinuity for the non-isentropic Navier-Stokes-Poisson system, Math. Methods Appl. Sci., 40 (2017), 2784-2810.
doi: 10.1002/mma.4198. |
[30] |
J. Smoller, Shock Waves and Reaction-Diffusion Equations, 2nd edition, Springer-Verlag, New York, 1994.
doi: 10.1007/978-1-4612-0873-0. |
[31] |
X. Xu,
Asymptotic behavior of solutions to an electromagnetic fluid model, Z. Angew. Math. Phys., 69 (2018), 1-19.
doi: 10.1007/s00033-018-0945-6. |
[1] |
Ling-Bing He, Li Xu. On the compressible Navier-Stokes equations in the whole space: From non-isentropic flow to isentropic flow. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3489-3530. doi: 10.3934/dcds.2021005 |
[2] |
Daoyuan Fang, Ting Zhang. Compressible Navier-Stokes equations with vacuum state in one dimension. Communications on Pure & Applied Analysis, 2004, 3 (4) : 675-694. doi: 10.3934/cpaa.2004.3.675 |
[3] |
Anderson L. A. de Araujo, Marcelo Montenegro. Existence of solution and asymptotic behavior for a class of parabolic equations. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1213-1227. doi: 10.3934/cpaa.2021017 |
[4] |
Rafael López, Óscar Perdomo. Constant-speed ramps for a central force field. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3447-3464. doi: 10.3934/dcds.2021003 |
[5] |
Carlos Fresneda-Portillo, Sergey E. Mikhailov. Analysis of Boundary-Domain Integral Equations to the mixed BVP for a compressible stokes system with variable viscosity. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3059-3088. doi: 10.3934/cpaa.2019137 |
[6] |
Sergey E. Mikhailov, Carlos F. Portillo. Boundary-Domain Integral Equations equivalent to an exterior mixed BVP for the variable-viscosity compressible Stokes PDEs. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1103-1133. doi: 10.3934/cpaa.2021009 |
[7] |
Thomas Y. Hou, Ruo Li. Nonexistence of locally self-similar blow-up for the 3D incompressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems, 2007, 18 (4) : 637-642. doi: 10.3934/dcds.2007.18.637 |
[8] |
Yueqiang Shang, Qihui Zhang. A subgrid stabilizing postprocessed mixed finite element method for the time-dependent Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3119-3142. doi: 10.3934/dcdsb.2020222 |
[9] |
Cheng Wang. Convergence analysis of Fourier pseudo-spectral schemes for three-dimensional incompressible Navier-Stokes equations. Electronic Research Archive, , () : -. doi: 10.3934/era.2021019 |
[10] |
Xin-Guang Yang, Rong-Nian Wang, Xingjie Yan, Alain Miranville. Dynamics of the 2D Navier-Stokes equations with sublinear operators in Lipschitz-like domains. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3343-3366. doi: 10.3934/dcds.2020408 |
[11] |
Xin Zhong. Global strong solution and exponential decay for nonhomogeneous Navier-Stokes and magnetohydrodynamic equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3563-3578. doi: 10.3934/dcdsb.2020246 |
[12] |
Fumihiko Nakamura. Asymptotic behavior of non-expanding piecewise linear maps in the presence of random noise. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2457-2473. doi: 10.3934/dcdsb.2018055 |
[13] |
Lingyu Li, Zhang Chen. Asymptotic behavior of non-autonomous random Ginzburg-Landau equation driven by colored noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3303-3333. doi: 10.3934/dcdsb.2020233 |
[14] |
Yongqiang Fu, Xiaoju Zhang. Global existence and asymptotic behavior of weak solutions for time-space fractional Kirchhoff-type diffusion equations. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021091 |
[15] |
Pengyu Chen, Xuping Zhang, Zhitao Zhang. Asymptotic behavior of time periodic solutions for extended Fisher-Kolmogorov equations with delays. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021103 |
[16] |
M. Grasselli, V. Pata. Asymptotic behavior of a parabolic-hyperbolic system. Communications on Pure & Applied Analysis, 2004, 3 (4) : 849-881. doi: 10.3934/cpaa.2004.3.849 |
[17] |
Mirela Kohr, Sergey E. Mikhailov, Wolfgang L. Wendland. Dirichlet and transmission problems for anisotropic stokes and Navier-Stokes systems with L∞ tensor coefficient under relaxed ellipticity condition. Discrete & Continuous Dynamical Systems, 2021 doi: 10.3934/dcds.2021042 |
[18] |
Jiangxing Wang. Convergence analysis of an accurate and efficient method for nonlinear Maxwell's equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2429-2440. doi: 10.3934/dcdsb.2020185 |
[19] |
Siting Liu, Levon Nurbekyan. Splitting methods for a class of non-potential mean field games. Journal of Dynamics & Games, 2021 doi: 10.3934/jdg.2021014 |
[20] |
Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258 |
2019 Impact Factor: 1.105
Tools
Article outline
[Back to Top]