doi: 10.3934/cpaa.2021200
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

On regularity and stability for a class of nonlocal evolution equations with nonlinear perturbations

Department of Mathematics, Hanoi National University of Education, 136 Xuan Thuy, Cau Giay, Hanoi, Vietnam

* Corresponding author

Received  August 2021 Early access December 2021

Fund Project: This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 101.02-2020.07. The first author was also supported by the Vietnam Institute for Advanced Study in Mathematics-VIASM

We study a class of nonlocal partial differential equations with nonlinear perturbations, which is a general model for some equations arose from fluid dynamics. Our aim is to analyze some sufficient conditions ensuring the global solvability, regularity and stability of solutions. Our analysis is based on the theory of completely positive kernel functions, local estimates and a new Gronwall type inequality.

Citation: Dinh-Ke Tran, Nhu-Thang Nguyen. On regularity and stability for a class of nonlocal evolution equations with nonlinear perturbations. Communications on Pure & Applied Analysis, doi: 10.3934/cpaa.2021200
References:
[1]

A. Allaberen, Well-posedness of the Basset problem in spaces of smooth functions, Appl. Math. Lett., 24 (2011), 1176-1180.  doi: 10.1016/j.aml.2011.02.002.  Google Scholar

[2]

E. BazhlekovaB. JinR. Lazarov and Z. Zhou, An analysis of the Rayleigh-Stokes problem for a generalized second-grade fluid, Numer. Math., 131 (2015), 1-31.  doi: 10.1007/s00211-014-0685-2.  Google Scholar

[3]

P. CannarsaH. Frankowska and E. M. Marchini, Optimal control for evolution equations with memory, J. Evol. Equ., 13 (2013), 197-227.  doi: 10.1007/s00028-013-0175-5.  Google Scholar

[4]

J. R. Cannon and Y.P. Lin, A priori $L^2$ error estimates for finite-element methods for nonlinear diffusion equations with memory, SIAM J. Numer. Anal., 27 (1990), 595-607.  doi: 10.1137/0727036.  Google Scholar

[5]

Ph. Clément and J. A. Nohel, Asymptotic behavior of solutions of nonlinear Volterra equations with completely positive kernels, SIAM J. Math. Anal., 12 (1981), 514-535.  doi: 10.1137/0512045.  Google Scholar

[6]

M. ContiElsa M. Marchini and V. Pata, Reaction-diffusion with memory in the minimal state framework, Trans. Amer. Math. Soc., 366 (2014), 4969-4986.  doi: 10.1090/S0002-9947-2013-06097-7.  Google Scholar

[7]

G. Di Blasio, Parabolic Volterra integrodifferential equations of convolution type, J. Integral Equ. Appl., 6 (1994), 479-508.  doi: 10.1216/jiea/1181075833.  Google Scholar

[8]

P. Drábek and J. Milota, Methods of Nonlinear Analysis. Applications to Differential Equations, Birkhäuser Verlag, Basel, 2007.  Google Scholar

[9]

K. Ezzinbi, S. Ghnimi and M. A. Taoudi, Existence results for some nonlocal partial integrodifferential equations without compactness or equicontinuity, J. Fixed Point Theory Appl., 21 (2019), 24 pp. doi: 10.1007/s11784-019-0689-8.  Google Scholar

[10]

L. C. Evans, Partial Differential Equations, Second edition. American Mathematical Society, Providence, RI, 2010. doi: 10.1090/gsm/019.  Google Scholar

[11]

T. D. Ke, N. N. Thang and L. T. P. Thuy, Regularity and stability analysis for a class of semilinear nonlocal differential equations in Hilbert spaces, J. Math. Anal. Appl., 483 (2020), 123655, 23 pp. doi: 10.1016/j.jmaa.2019.123655.  Google Scholar

[12]

D. Lan, Regularity and stability analysis for semilinear generalized Rayleigh-Stokes equations, Evol. Equ. Control Theory, 2021. doi: 10.3934/eect.2021002.  Google Scholar

[13]

N.H. Luc, D. Lan, D. O'Regan, N.A. Tuan and Y. Zhou, On the initial value problem for the nonlinear fractional Rayleigh-Stokes equation, J. Fixed Point Theory Appl., 23 (2021), 28 pp. doi: 10.1007/s11784-021-00897-7.  Google Scholar

[14]

N. H. LucN. H. Tuan and Y. Zhou, Regularity of the solution for a final value problem for the Rayleigh-Stokes equation, Math. Methods Appl. Sci., 42 (2019), 3481-3495.  doi: 10.1002/mma.5593.  Google Scholar

[15]

S. McKee and A. Stokes, Product integration methods for the nonlinear Basset equation, SIAM J. Numer. Anal., 20 (1983), 143-160.  doi: 10.1137/0720010.  Google Scholar

[16]

R. K. Miller, On Volterra integral equations with nonnegative integrable resolvents, J. Math. Anal. Appl., 22 (1968), 319-340.  doi: 10.1016/0022-247X(68)90176-5.  Google Scholar

[17]

R. K. Miller, An integro-differential equation for rigid heat conductors with memory, J. Math. Anal. Appl., 66 (1978), 313-332.  doi: 10.1016/0022-247X(78)90234-2.  Google Scholar

[18]

A. Mohebbi, Crank-Nicolson and Legendre spectral collocation methods for a partial integro-differential equation with a singular kernel, J. Comput. Appl. Math., 349 (2019), 197-206.  doi: 10.1016/j.cam.2018.09.034.  Google Scholar

[19]

T. B. NgocN. H. LucV. V. AuN. H. Tuan and Y. Zhou, Existence and regularity of inverse problem for the nonlinear fractional Rayleigh-Stokes equations, Math. Methods Appl. Sci., 44 (2020), 2532-2558.  doi: 10.1002/mma.6162.  Google Scholar

[20]

J. Prüss, Evolutionary Integral Equations and Applications, Monographs in Mathematics 87, Birkhäuser, Basel, 1993. doi: 10.1007/978-3-0348-8570-6.  Google Scholar

[21]

N. H. Tuan, Y. Zhou, T. N. Thach and N. H. Can, Initial inverse problem for the nonlinear fractional Rayleigh-Stokes equation with random discrete data, Commun. Nonlinear Sci. Numer. Simul., 78 (2019), 18 pp. doi: 10.1016/j.cnsns.2019.104873.  Google Scholar

[22]

V. Vergara and R. Zacher, Optimal decay estimates for time-fractional and other nonlocal subdiffusion equations via energy methods, SIAM J. Math. Anal., 47 (2015), 210-239.  doi: 10.1137/130941900.  Google Scholar

[23]

B. Wu and J. Yu, Uniqueness of an inverse problem for an integro-differential equation related to the Basset problem, Bound. Value Probl., 229 (2014), 9 pp. doi: 10.1186/s13661-014-0229-9.  Google Scholar

[24]

J. ZierepR. Bohning and C. Fetecau, Rayleigh-Stokes problem for non-Newtonian medium with memory, Z. Angew. Math. Mech., 87 (2007), 462-467.  doi: 10.1002/zamm.200710328.  Google Scholar

[25]

Y. Zhou and J.N. Wang, The nonlinear Rayleigh-Stokes problem with Riemann-Liouville fractional derivative, Math. Methods Appl. Sci., 44 (2021), 2431-2438.  doi: 10.1002/mma.5926.  Google Scholar

show all references

References:
[1]

A. Allaberen, Well-posedness of the Basset problem in spaces of smooth functions, Appl. Math. Lett., 24 (2011), 1176-1180.  doi: 10.1016/j.aml.2011.02.002.  Google Scholar

[2]

E. BazhlekovaB. JinR. Lazarov and Z. Zhou, An analysis of the Rayleigh-Stokes problem for a generalized second-grade fluid, Numer. Math., 131 (2015), 1-31.  doi: 10.1007/s00211-014-0685-2.  Google Scholar

[3]

P. CannarsaH. Frankowska and E. M. Marchini, Optimal control for evolution equations with memory, J. Evol. Equ., 13 (2013), 197-227.  doi: 10.1007/s00028-013-0175-5.  Google Scholar

[4]

J. R. Cannon and Y.P. Lin, A priori $L^2$ error estimates for finite-element methods for nonlinear diffusion equations with memory, SIAM J. Numer. Anal., 27 (1990), 595-607.  doi: 10.1137/0727036.  Google Scholar

[5]

Ph. Clément and J. A. Nohel, Asymptotic behavior of solutions of nonlinear Volterra equations with completely positive kernels, SIAM J. Math. Anal., 12 (1981), 514-535.  doi: 10.1137/0512045.  Google Scholar

[6]

M. ContiElsa M. Marchini and V. Pata, Reaction-diffusion with memory in the minimal state framework, Trans. Amer. Math. Soc., 366 (2014), 4969-4986.  doi: 10.1090/S0002-9947-2013-06097-7.  Google Scholar

[7]

G. Di Blasio, Parabolic Volterra integrodifferential equations of convolution type, J. Integral Equ. Appl., 6 (1994), 479-508.  doi: 10.1216/jiea/1181075833.  Google Scholar

[8]

P. Drábek and J. Milota, Methods of Nonlinear Analysis. Applications to Differential Equations, Birkhäuser Verlag, Basel, 2007.  Google Scholar

[9]

K. Ezzinbi, S. Ghnimi and M. A. Taoudi, Existence results for some nonlocal partial integrodifferential equations without compactness or equicontinuity, J. Fixed Point Theory Appl., 21 (2019), 24 pp. doi: 10.1007/s11784-019-0689-8.  Google Scholar

[10]

L. C. Evans, Partial Differential Equations, Second edition. American Mathematical Society, Providence, RI, 2010. doi: 10.1090/gsm/019.  Google Scholar

[11]

T. D. Ke, N. N. Thang and L. T. P. Thuy, Regularity and stability analysis for a class of semilinear nonlocal differential equations in Hilbert spaces, J. Math. Anal. Appl., 483 (2020), 123655, 23 pp. doi: 10.1016/j.jmaa.2019.123655.  Google Scholar

[12]

D. Lan, Regularity and stability analysis for semilinear generalized Rayleigh-Stokes equations, Evol. Equ. Control Theory, 2021. doi: 10.3934/eect.2021002.  Google Scholar

[13]

N.H. Luc, D. Lan, D. O'Regan, N.A. Tuan and Y. Zhou, On the initial value problem for the nonlinear fractional Rayleigh-Stokes equation, J. Fixed Point Theory Appl., 23 (2021), 28 pp. doi: 10.1007/s11784-021-00897-7.  Google Scholar

[14]

N. H. LucN. H. Tuan and Y. Zhou, Regularity of the solution for a final value problem for the Rayleigh-Stokes equation, Math. Methods Appl. Sci., 42 (2019), 3481-3495.  doi: 10.1002/mma.5593.  Google Scholar

[15]

S. McKee and A. Stokes, Product integration methods for the nonlinear Basset equation, SIAM J. Numer. Anal., 20 (1983), 143-160.  doi: 10.1137/0720010.  Google Scholar

[16]

R. K. Miller, On Volterra integral equations with nonnegative integrable resolvents, J. Math. Anal. Appl., 22 (1968), 319-340.  doi: 10.1016/0022-247X(68)90176-5.  Google Scholar

[17]

R. K. Miller, An integro-differential equation for rigid heat conductors with memory, J. Math. Anal. Appl., 66 (1978), 313-332.  doi: 10.1016/0022-247X(78)90234-2.  Google Scholar

[18]

A. Mohebbi, Crank-Nicolson and Legendre spectral collocation methods for a partial integro-differential equation with a singular kernel, J. Comput. Appl. Math., 349 (2019), 197-206.  doi: 10.1016/j.cam.2018.09.034.  Google Scholar

[19]

T. B. NgocN. H. LucV. V. AuN. H. Tuan and Y. Zhou, Existence and regularity of inverse problem for the nonlinear fractional Rayleigh-Stokes equations, Math. Methods Appl. Sci., 44 (2020), 2532-2558.  doi: 10.1002/mma.6162.  Google Scholar

[20]

J. Prüss, Evolutionary Integral Equations and Applications, Monographs in Mathematics 87, Birkhäuser, Basel, 1993. doi: 10.1007/978-3-0348-8570-6.  Google Scholar

[21]

N. H. Tuan, Y. Zhou, T. N. Thach and N. H. Can, Initial inverse problem for the nonlinear fractional Rayleigh-Stokes equation with random discrete data, Commun. Nonlinear Sci. Numer. Simul., 78 (2019), 18 pp. doi: 10.1016/j.cnsns.2019.104873.  Google Scholar

[22]

V. Vergara and R. Zacher, Optimal decay estimates for time-fractional and other nonlocal subdiffusion equations via energy methods, SIAM J. Math. Anal., 47 (2015), 210-239.  doi: 10.1137/130941900.  Google Scholar

[23]

B. Wu and J. Yu, Uniqueness of an inverse problem for an integro-differential equation related to the Basset problem, Bound. Value Probl., 229 (2014), 9 pp. doi: 10.1186/s13661-014-0229-9.  Google Scholar

[24]

J. ZierepR. Bohning and C. Fetecau, Rayleigh-Stokes problem for non-Newtonian medium with memory, Z. Angew. Math. Mech., 87 (2007), 462-467.  doi: 10.1002/zamm.200710328.  Google Scholar

[25]

Y. Zhou and J.N. Wang, The nonlinear Rayleigh-Stokes problem with Riemann-Liouville fractional derivative, Math. Methods Appl. Sci., 44 (2021), 2431-2438.  doi: 10.1002/mma.5926.  Google Scholar

[1]

Jingjing Wang, Zaiyun Peng, Zhi Lin, Daqiong Zhou. On the stability of solutions for the generalized vector quasi-equilibrium problems via free-disposal set. Journal of Industrial & Management Optimization, 2021, 17 (2) : 869-887. doi: 10.3934/jimo.2020002

[2]

Qinglong Zhou, Yongchao Zhang. Analytic results for the linear stability of the equilibrium point in Robe's restricted elliptic three-body problem. Discrete & Continuous Dynamical Systems, 2017, 37 (3) : 1763-1787. doi: 10.3934/dcds.2017074

[3]

Yakov Krasnov, Alexander Kononovich, Grigory Osharovich. On a structure of the fixed point set of homogeneous maps. Discrete & Continuous Dynamical Systems - S, 2013, 6 (4) : 1017-1027. doi: 10.3934/dcdss.2013.6.1017

[4]

Xiong Li. The stability of the equilibrium for a perturbed asymmetric oscillator. Communications on Pure & Applied Analysis, 2006, 5 (3) : 515-528. doi: 10.3934/cpaa.2006.5.515

[5]

Xiong Li. The stability of the equilibrium for a perturbed asymmetric oscillator. Communications on Pure & Applied Analysis, 2007, 6 (1) : 69-82. doi: 10.3934/cpaa.2007.6.69

[6]

Xavier Cabré. Elliptic PDE's in probability and geometry: Symmetry and regularity of solutions. Discrete & Continuous Dynamical Systems, 2008, 20 (3) : 425-457. doi: 10.3934/dcds.2008.20.425

[7]

Mouhamed Moustapha Fall. Regularity estimates for nonlocal Schrödinger equations. Discrete & Continuous Dynamical Systems, 2019, 39 (3) : 1405-1456. doi: 10.3934/dcds.2019061

[8]

Mostafa Fazly. Regularity of extremal solutions of nonlocal elliptic systems. Discrete & Continuous Dynamical Systems, 2020, 40 (1) : 107-131. doi: 10.3934/dcds.2020005

[9]

Roger Metzger, Carlos Arnoldo Morales Rojas, Phillipe Thieullen. Topological stability in set-valued dynamics. Discrete & Continuous Dynamical Systems - B, 2017, 22 (5) : 1965-1975. doi: 10.3934/dcdsb.2017115

[10]

Franco Maceri, Michele Marino, Giuseppe Vairo. Equilibrium and stability of tensegrity structures: A convex analysis approach. Discrete & Continuous Dynamical Systems - S, 2013, 6 (2) : 461-478. doi: 10.3934/dcdss.2013.6.461

[11]

George Avalos. Strong stability of PDE semigroups via a generator resolvent criterion. Discrete & Continuous Dynamical Systems - S, 2008, 1 (2) : 207-218. doi: 10.3934/dcdss.2008.1.207

[12]

Frederic Laurent-Polz, James Montaldi, Mark Roberts. Point vortices on the sphere: Stability of symmetric relative equilibria. Journal of Geometric Mechanics, 2011, 3 (4) : 439-486. doi: 10.3934/jgm.2011.3.439

[13]

Wided Kechiche. Regularity of the global attractor for a nonlinear Schrödinger equation with a point defect. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1233-1252. doi: 10.3934/cpaa.2017060

[14]

Igor Shevchenko, Barbara Kaltenbacher. Absorbing boundary conditions for the Westervelt equation. Conference Publications, 2015, 2015 (special) : 1000-1008. doi: 10.3934/proc.2015.1000

[15]

Peter E. Kloeden, Stefanie Sonner, Christina Surulescu. A nonlocal sample dependence SDE-PDE system modeling proton dynamics in a tumor. Discrete & Continuous Dynamical Systems - B, 2016, 21 (7) : 2233-2254. doi: 10.3934/dcdsb.2016045

[16]

Fatimzehrae Ait Bella, Aissam Hadri, Abdelilah Hakim, Amine Laghrib. A nonlocal Weickert type PDE applied to multi-frame super-resolution. Evolution Equations & Control Theory, 2021, 10 (3) : 633-655. doi: 10.3934/eect.2020084

[17]

Shasha Hu, Yihong Xu, Yuhan Zhang. Second-Order characterizations for set-valued equilibrium problems with variable ordering structures. Journal of Industrial & Management Optimization, 2022, 18 (1) : 469-486. doi: 10.3934/jimo.2020164

[18]

Junxiang Xu. On quasi-periodic perturbations of hyperbolic-type degenerate equilibrium point of a class of planar systems. Discrete & Continuous Dynamical Systems, 2013, 33 (6) : 2593-2619. doi: 10.3934/dcds.2013.33.2593

[19]

Valery Y. Glizer, Oleg Kelis. Singular infinite horizon zero-sum linear-quadratic differential game: Saddle-point equilibrium sequence. Numerical Algebra, Control & Optimization, 2017, 7 (1) : 1-20. doi: 10.3934/naco.2017001

[20]

Yibing Lv, Tiesong Hu, Jianlin Jiang. Penalty method-based equilibrium point approach for solving the linear bilevel multiobjective programming problem. Discrete & Continuous Dynamical Systems - S, 2020, 13 (6) : 1743-1755. doi: 10.3934/dcdss.2020102

2020 Impact Factor: 1.916

Metrics

  • PDF downloads (129)
  • HTML views (65)
  • Cited by (0)

Other articles
by authors

[Back to Top]