1996, 2(2): 153-161. doi: 10.3934/dcds.1996.2.153

Closed geodesic distribution for manifolds of non-positive curvature

1. 

Department of Mathematics, University of Manchester, Oxford Road, Manchester M13 9PL

Received  December 1995 Published  February 1996

In this paper we give a generalization of Bowen's equidistribution result for closed geodesics on negatively curved manifolds to rank one manifolds.
Citation: Mark Pollicott. Closed geodesic distribution for manifolds of non-positive curvature. Discrete & Continuous Dynamical Systems - A, 1996, 2 (2) : 153-161. doi: 10.3934/dcds.1996.2.153
[1]

Alex Eskin, Maryam Mirzakhani. Counting closed geodesics in moduli space. Journal of Modern Dynamics, 2011, 5 (1) : 71-105. doi: 10.3934/jmd.2011.5.71

[2]

Michał Misiurewicz. On Bowen's definition of topological entropy. Discrete & Continuous Dynamical Systems - A, 2004, 10 (3) : 827-833. doi: 10.3934/dcds.2004.10.827

[3]

Ursula Hamenstädt. Bowen's construction for the Teichmüller flow. Journal of Modern Dynamics, 2013, 7 (4) : 489-526. doi: 10.3934/jmd.2013.7.489

[4]

Artur O. Lopes, Rafael O. Ruggiero. Large deviations and Aubry-Mather measures supported in nonhyperbolic closed geodesics. Discrete & Continuous Dynamical Systems - A, 2011, 29 (3) : 1155-1174. doi: 10.3934/dcds.2011.29.1155

[5]

Wenzhi Luo, Zeév Rudnick, Peter Sarnak. The variance of arithmetic measures associated to closed geodesics on the modular surface. Journal of Modern Dynamics, 2009, 3 (2) : 271-309. doi: 10.3934/jmd.2009.3.271

[6]

Abbas Bahri. Attaching maps in the standard geodesics problem on $S^2$. Discrete & Continuous Dynamical Systems - A, 2011, 30 (2) : 379-426. doi: 10.3934/dcds.2011.30.379

[7]

Mario Roy. A new variation of Bowen's formula for graph directed Markov systems. Discrete & Continuous Dynamical Systems - A, 2012, 32 (7) : 2533-2551. doi: 10.3934/dcds.2012.32.2533

[8]

Emmanuel Hebey. The Lin-Ni's conjecture for vector-valued Schrödinger equations in the closed case. Communications on Pure & Applied Analysis, 2010, 9 (4) : 955-962. doi: 10.3934/cpaa.2010.9.955

[9]

Hiroki Sumi, Mariusz Urbański. Bowen parameter and Hausdorff dimension for expanding rational semigroups. Discrete & Continuous Dynamical Systems - A, 2012, 32 (7) : 2591-2606. doi: 10.3934/dcds.2012.32.2591

[10]

Maria Pires De Carvalho. Persistence of Bowen-Ruelle-Sinai measures. Discrete & Continuous Dynamical Systems - A, 2007, 17 (1) : 213-221. doi: 10.3934/dcds.2007.17.213

[11]

Esteban Muñoz-Young, Andrés Navas, Enrique Pujals, Carlos H. Vásquez. A continuous Bowen-Mane type phenomenon. Discrete & Continuous Dynamical Systems - A, 2008, 20 (3) : 713-724. doi: 10.3934/dcds.2008.20.713

[12]

Wenyu Pan. Effective equidistribution of circles in the limit sets of Kleinian groups. Journal of Modern Dynamics, 2017, 11: 189-217. doi: 10.3934/jmd.2017009

[13]

R. Bartolo, Anna Maria Candela, J.L. Flores. Timelike Geodesics in stationary Lorentzian manifolds with unbounded coefficients. Conference Publications, 2005, 2005 (Special) : 70-76. doi: 10.3934/proc.2005.2005.70

[14]

Eva Glasmachers, Gerhard Knieper, Carlos Ogouyandjou, Jan Philipp Schröder. Topological entropy of minimal geodesics and volume growth on surfaces. Journal of Modern Dynamics, 2014, 8 (1) : 75-91. doi: 10.3934/jmd.2014.8.75

[15]

Alexander Nabutovsky and Regina Rotman. Lengths of geodesics between two points on a Riemannian manifold. Electronic Research Announcements, 2007, 13: 13-20.

[16]

Salvatore Cosentino, Livio Flaminio. Equidistribution for higher-rank Abelian actions on Heisenberg nilmanifolds. Journal of Modern Dynamics, 2015, 9: 305-353. doi: 10.3934/jmd.2015.9.305

[17]

Kathryn Dabbs, Michael Kelly, Han Li. Effective equidistribution of translates of maximal horospherical measures in the space of lattices. Journal of Modern Dynamics, 2016, 10: 229-254. doi: 10.3934/jmd.2016.10.229

[18]

Sanghoon Kwon, Seonhee Lim. Equidistribution with an error rate and Diophantine approximation over a local field of positive characteristic. Discrete & Continuous Dynamical Systems - A, 2018, 38 (1) : 169-186. doi: 10.3934/dcds.2018008

[19]

Olivier Brahic. Infinitesimal gauge symmetries of closed forms. Journal of Geometric Mechanics, 2011, 3 (3) : 277-312. doi: 10.3934/jgm.2011.3.277

[20]

Vladimir S. Matveev and Petar J. Topalov. Metric with ergodic geodesic flow is completely determined by unparameterized geodesics. Electronic Research Announcements, 2000, 6: 98-104.

2016 Impact Factor: 1.099

Metrics

  • PDF downloads (3)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]