1996, 2(3): 387-396. doi: 10.3934/dcds.1996.2.387

A result in global bifurcation theory using the Conley index

1. 

Department of Mathematics, Northwestern University, Evanston, IL 60208-2730, United States

Received  April 1996 Published  May 1996

We study a saddle-node bifurcation in a Lipschitz family of diffeomorphisms on a manifold, in the case that the stable set and unstable set of the fixed point intersect transversally in a countable collection of one-dimensional manifolds diffeomorphic to circles. We formulate generic conditions on the circles stated in terms of standard coordinates, a recently defined tool for the study of saddle-node bifurcations. Under the conditions, it is shown that there is a decreasing sequence of intervals $[\underline{\mu_j},\overline{\mu_j}]$ of parameter values for which the diffeomorphism is semi-conjugated to shift dynamics on the space of binary sequences. The semi-conjugacy is implied by a recent result in the Conley index theory.
Citation: Todd Young. A result in global bifurcation theory using the Conley index. Discrete & Continuous Dynamical Systems - A, 1996, 2 (3) : 387-396. doi: 10.3934/dcds.1996.2.387
[1]

Yuanshi Wang, Hong Wu, Shigui Ruan. Global dynamics and bifurcations in a four-dimensional replicator system. Discrete & Continuous Dynamical Systems - B, 2013, 18 (1) : 259-271. doi: 10.3934/dcdsb.2013.18.259

[2]

Rafael Ortega, Andrés Rivera. Global bifurcations from the center of mass in the Sitnikov problem. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 719-732. doi: 10.3934/dcdsb.2010.14.719

[3]

Peter W. Bates, Jiayin Jin. Global dynamics of boundary droplets. Discrete & Continuous Dynamical Systems - A, 2014, 34 (1) : 1-17. doi: 10.3934/dcds.2014.34.1

[4]

Anna Goƚȩbiewska, Norimichi Hirano, Sƚawomir Rybicki. Global symmetry-breaking bifurcations of critical orbits of invariant functionals. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 2005-2017. doi: 10.3934/dcdss.2019129

[5]

Denise E. Kirschner, Alexei Tsygvintsev. On the global dynamics of a model for tumor immunotherapy. Mathematical Biosciences & Engineering, 2009, 6 (3) : 573-583. doi: 10.3934/mbe.2009.6.573

[6]

Hongying Shu, Xiang-Sheng Wang. Global dynamics of a coupled epidemic model. Discrete & Continuous Dynamical Systems - B, 2017, 22 (4) : 1575-1585. doi: 10.3934/dcdsb.2017076

[7]

Begoña Alarcón, Sofia B. S. D. Castro, Isabel S. Labouriau. Global dynamics for symmetric planar maps. Discrete & Continuous Dynamical Systems - A, 2013, 33 (6) : 2241-2251. doi: 10.3934/dcds.2013.33.2241

[8]

Anatoli F. Ivanov. On global dynamics in a multi-dimensional discrete map. Conference Publications, 2015, 2015 (special) : 652-659. doi: 10.3934/proc.2015.0652

[9]

Hongbin Guo, Michael Yi Li. Global dynamics of a staged progression model for infectious diseases. Mathematical Biosciences & Engineering, 2006, 3 (3) : 513-525. doi: 10.3934/mbe.2006.3.513

[10]

Mohammad A. Safi, Abba B. Gumel. Global asymptotic dynamics of a model for quarantine and isolation. Discrete & Continuous Dynamical Systems - B, 2010, 14 (1) : 209-231. doi: 10.3934/dcdsb.2010.14.209

[11]

Songbai Guo, Wanbiao Ma. Global dynamics of a microorganism flocculation model with time delay. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1883-1891. doi: 10.3934/cpaa.2017091

[12]

Hui li, Manjun Ma. Global dynamics of a virus infection model with repulsive effect. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-15. doi: 10.3934/dcdsb.2019030

[13]

Zongming Guo, Juncheng Wei. Asymptotic behavior of touch-down solutions and global bifurcations for an elliptic problem with a singular nonlinearity. Communications on Pure & Applied Analysis, 2008, 7 (4) : 765-786. doi: 10.3934/cpaa.2008.7.765

[14]

Carles Bonet-Revés, Tere M-Seara. Regularization of sliding global bifurcations derived from the local fold singularity of Filippov systems. Discrete & Continuous Dynamical Systems - A, 2016, 36 (7) : 3545-3601. doi: 10.3934/dcds.2016.36.3545

[15]

Pablo Aguirre, Eusebius J. Doedel, Bernd Krauskopf, Hinke M. Osinga. Investigating the consequences of global bifurcations for two-dimensional invariant manifolds of vector fields. Discrete & Continuous Dynamical Systems - A, 2011, 29 (4) : 1309-1344. doi: 10.3934/dcds.2011.29.1309

[16]

Xiuli Sun, Rong Yuan, Yunfei Lv. Global Hopf bifurcations of neutral functional differential equations with state-dependent delay. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 667-700. doi: 10.3934/dcdsb.2018038

[17]

Guowei Dai, Rushun Tian, Zhitao Zhang. Global bifurcations and a priori bounds of positive solutions for coupled nonlinear Schrödinger Systems. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 1905-1927. doi: 10.3934/dcdss.2019125

[18]

Hicham Zmarrou, Ale Jan Homburg. Dynamics and bifurcations of random circle diffeomorphism. Discrete & Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 719-731. doi: 10.3934/dcdsb.2008.10.719

[19]

Pierre Magal. Global stability for differential equations with homogeneous nonlinearity and application to population dynamics. Discrete & Continuous Dynamical Systems - B, 2002, 2 (4) : 541-560. doi: 10.3934/dcdsb.2002.2.541

[20]

Ting-Hui Yang, Weinian Zhang, Kaijen Cheng. Global dynamics of three species omnivory models with Lotka-Volterra interaction. Discrete & Continuous Dynamical Systems - B, 2016, 21 (8) : 2867-2881. doi: 10.3934/dcdsb.2016077

2017 Impact Factor: 1.179

Metrics

  • PDF downloads (10)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]