2001, 7(2): 343-362. doi: 10.3934/dcds.2001.7.343

Maximum principles for the primitive equations of the atmosphere

1. 

Institute for Scientific Computing and Applied Mathematics, Indiana University, Rawles Hall, 831 E. Third Street, Bloomington, IN 47405, United States, United States

Received  November 2000 Published  January 2001

In this article, maximum principles are derived for a suitably modified form of the equation of temperature for the primitive equations of the atmosphere; we consider both the limited domain case in Cartesian coordinates and the ow of the whole atmosphere in spherical coordinates.
Citation: Brian D. Ewald, Roger Témam. Maximum principles for the primitive equations of the atmosphere. Discrete & Continuous Dynamical Systems - A, 2001, 7 (2) : 343-362. doi: 10.3934/dcds.2001.7.343
[1]

Boling Guo, Guoli Zhou. Finite dimensionality of global attractor for the solutions to 3D viscous primitive equations of large-scale moist atmosphere. Discrete & Continuous Dynamical Systems - B, 2018, 22 (11) : 1-23. doi: 10.3934/dcdsb.2018160

[2]

A. Domoshnitsky. About maximum principles for one of the components of solution vector and stability for systems of linear delay differential equations. Conference Publications, 2011, 2011 (Special) : 373-380. doi: 10.3934/proc.2011.2011.373

[3]

Cristian Enache. Maximum and minimum principles for a class of Monge-Ampère equations in the plane, with applications to surfaces of constant Gauss curvature. Communications on Pure & Applied Analysis, 2014, 13 (3) : 1347-1359. doi: 10.3934/cpaa.2014.13.1347

[4]

Wenmin Sun, Jiguang Bao. New maximum principles for fully nonlinear ODEs of second order. Discrete & Continuous Dynamical Systems - A, 2007, 19 (4) : 813-823. doi: 10.3934/dcds.2007.19.813

[5]

Cheng Wang. The primitive equations formulated in mean vorticity. Conference Publications, 2003, 2003 (Special) : 880-887. doi: 10.3934/proc.2003.2003.880

[6]

Roger Temam, D. Wirosoetisno. Exponential approximations for the primitive equations of the ocean. Discrete & Continuous Dynamical Systems - B, 2007, 7 (2) : 425-440. doi: 10.3934/dcdsb.2007.7.425

[7]

Bernard Dacorogna, Alessandro Ferriero. Regularity and selecting principles for implicit ordinary differential equations. Discrete & Continuous Dynamical Systems - B, 2009, 11 (1) : 87-101. doi: 10.3934/dcdsb.2009.11.87

[8]

T. Tachim Medjo. Robust control problems for primitive equations of the ocean. Discrete & Continuous Dynamical Systems - B, 2011, 15 (3) : 769-788. doi: 10.3934/dcdsb.2011.15.769

[9]

G. A. Leonov. Generalized Lorenz Equations for Acoustic-Gravity Waves in the Atmosphere. Attractors Dimension, Convergence and Homoclinic Trajectories. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2253-2267. doi: 10.3934/cpaa.2017111

[10]

Ning Ju. The global attractor for the solutions to the 3D viscous primitive equations. Discrete & Continuous Dynamical Systems - A, 2007, 17 (1) : 159-179. doi: 10.3934/dcds.2007.17.159

[11]

T. Tachim Medjo. The exponential behavior of the stochastic primitive equations in two dimensional space with multiplicative noise. Discrete & Continuous Dynamical Systems - B, 2010, 14 (1) : 177-197. doi: 10.3934/dcdsb.2010.14.177

[12]

Makram Hamouda, Chang-Yeol Jung, Roger Temam. Boundary layers for the 2D linearized primitive equations. Communications on Pure & Applied Analysis, 2009, 8 (1) : 335-359. doi: 10.3934/cpaa.2009.8.335

[13]

Changbing Hu, Roger Temam, Mohammed Ziane. The primitive equations on the large scale ocean under the small depth hypothesis. Discrete & Continuous Dynamical Systems - A, 2003, 9 (1) : 97-131. doi: 10.3934/dcds.2003.9.97

[14]

Nathan Glatt-Holtz, Mohammed Ziane. The stochastic primitive equations in two space dimensions with multiplicative noise. Discrete & Continuous Dynamical Systems - B, 2008, 10 (4) : 801-822. doi: 10.3934/dcdsb.2008.10.801

[15]

Makram Hamouda, Chang-Yeol Jung, Roger Temam. Asymptotic analysis for the 3D primitive equations in a channel. Discrete & Continuous Dynamical Systems - S, 2013, 6 (2) : 401-422. doi: 10.3934/dcdss.2013.6.401

[16]

Ning Ju. The finite dimensional global attractor for the 3D viscous Primitive Equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 7001-7020. doi: 10.3934/dcds.2016104

[17]

M. Petcu, Roger Temam, D. Wirosoetisno. Existence and regularity results for the primitive equations in two space dimensions. Communications on Pure & Applied Analysis, 2004, 3 (1) : 115-131. doi: 10.3934/cpaa.2004.3.115

[18]

T. Tachim Medjo. Existence and uniqueness of strong periodic solutions of the primitive equations of the ocean. Discrete & Continuous Dynamical Systems - A, 2010, 26 (4) : 1491-1508. doi: 10.3934/dcds.2010.26.1491

[19]

Madalina Petcu, Roger Temam, Djoko Wirosoetisno. Averaging method applied to the three-dimensional primitive equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5681-5707. doi: 10.3934/dcds.2016049

[20]

Hongjun Gao, Chengfeng Sun. Well-posedness of stochastic primitive equations with multiplicative noise in three dimensions. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3053-3073. doi: 10.3934/dcdsb.2016087

2017 Impact Factor: 1.179

Metrics

  • PDF downloads (3)
  • HTML views (0)
  • Cited by (11)

Other articles
by authors

[Back to Top]