
Previous Article
Nonvariational elliptic systems
 DCDS Home
 This Issue

Next Article
Some Dirichlet problems with bad coercivity
Solitons and Bohmian mechanics
1.  Dip. di Matematica Applicata, Università di Pisa, Via Bonanno Pisano 25/B, Italy 
[1] 
John Boyd. Strongly nonlinear perturbation theory for solitary waves and bions. Evolution Equations & Control Theory, 2019, 8 (1) : 129. doi: 10.3934/eect.2019001 
[2] 
José Raúl Quintero, Juan Carlos Muñoz Grajales. Solitary waves for an internal wave model. Discrete & Continuous Dynamical Systems  A, 2016, 36 (10) : 57215741. doi: 10.3934/dcds.2016051 
[3] 
Jerry Bona, Hongqiu Chen. Solitary waves in nonlinear dispersive systems. Discrete & Continuous Dynamical Systems  B, 2002, 2 (3) : 313378. doi: 10.3934/dcdsb.2002.2.313 
[4] 
José R. Quintero. Nonlinear stability of solitary waves for a 2d BenneyLuke equation. Discrete & Continuous Dynamical Systems  A, 2005, 13 (1) : 203218. doi: 10.3934/dcds.2005.13.203 
[5] 
Yiren Chen, Zhengrong Liu. The bifurcations of solitary and kink waves described by the Gardner equation. Discrete & Continuous Dynamical Systems  S, 2016, 9 (6) : 16291645. doi: 10.3934/dcdss.2016067 
[6] 
H. Kalisch. Stability of solitary waves for a nonlinearly dispersive equation. Discrete & Continuous Dynamical Systems  A, 2004, 10 (3) : 709717. doi: 10.3934/dcds.2004.10.709 
[7] 
Juan BelmonteBeitia, Vladyslav Prytula. Existence of solitary waves in nonlinear equations of Schrödinger type. Discrete & Continuous Dynamical Systems  S, 2011, 4 (5) : 10071017. doi: 10.3934/dcdss.2011.4.1007 
[8] 
David Usero. Dark solitary waves in nonlocal nonlinear Schrödinger systems. Discrete & Continuous Dynamical Systems  S, 2011, 4 (5) : 13271340. doi: 10.3934/dcdss.2011.4.1327 
[9] 
Santosh Bhattarai. Stability of normalized solitary waves for three coupled nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems  A, 2016, 36 (4) : 17891811. doi: 10.3934/dcds.2016.36.1789 
[10] 
Cheng Hou Tsang, Boris A. Malomed, Kwok Wing Chow. Exact solutions for periodic and solitary matter waves in nonlinear lattices. Discrete & Continuous Dynamical Systems  S, 2011, 4 (5) : 12991325. doi: 10.3934/dcdss.2011.4.1299 
[11] 
Amin Esfahani, Steve Levandosky. Solitary waves of the rotationgeneralized BenjaminOno equation. Discrete & Continuous Dynamical Systems  A, 2013, 33 (2) : 663700. doi: 10.3934/dcds.2013.33.663 
[12] 
Steve Levandosky, Yue Liu. Stability and weak rotation limit of solitary waves of the Ostrovsky equation. Discrete & Continuous Dynamical Systems  B, 2007, 7 (4) : 793806. doi: 10.3934/dcdsb.2007.7.793 
[13] 
Khaled El Dika. Asymptotic stability of solitary waves for the BenjaminBonaMahony equation. Discrete & Continuous Dynamical Systems  A, 2005, 13 (3) : 583622. doi: 10.3934/dcds.2005.13.583 
[14] 
Sevdzhan Hakkaev. Orbital stability of solitary waves of the SchrödingerBoussinesq equation. Communications on Pure & Applied Analysis, 2007, 6 (4) : 10431050. doi: 10.3934/cpaa.2007.6.1043 
[15] 
Jerry L. Bona, Didier Pilod. Stability of solitarywave solutions to the HirotaSatsuma equation. Discrete & Continuous Dynamical Systems  A, 2010, 27 (4) : 13911413. doi: 10.3934/dcds.2010.27.1391 
[16] 
Jibin Li, Yi Zhang. Exact solitary wave and quasiperiodic wave solutions for four fifthorder nonlinear wave equations. Discrete & Continuous Dynamical Systems  B, 2010, 13 (3) : 623631. doi: 10.3934/dcdsb.2010.13.623 
[17] 
Jibin Li. Family of nonlinear wave equations which yield loop solutions and solitary wave solutions. Discrete & Continuous Dynamical Systems  A, 2009, 24 (3) : 897907. doi: 10.3934/dcds.2009.24.897 
[18] 
TaiChia Lin. Vortices for the nonlinear wave equation. Discrete & Continuous Dynamical Systems  A, 1999, 5 (2) : 391398. doi: 10.3934/dcds.1999.5.391 
[19] 
Nghiem V. Nguyen, ZhiQiang Wang. Existence and stability of a twoparameter family of solitary waves for a 2coupled nonlinear Schrödinger system. Discrete & Continuous Dynamical Systems  A, 2016, 36 (2) : 10051021. doi: 10.3934/dcds.2016.36.1005 
[20] 
Andrey Sarychev. Controllability of the cubic Schroedinger equation via a lowdimensional source term. Mathematical Control & Related Fields, 2012, 2 (3) : 247270. doi: 10.3934/mcrf.2012.2.247 
2018 Impact Factor: 1.143
Tools
Metrics
Other articles
by authors
[Back to Top]