2003, 9(5): 1149-1173. doi: 10.3934/dcds.2003.9.1149

Blow up of the isosceles 3--body problem with an infinitesimal mass

1. 

Departamento de Matemáticas, Universidad Autónoma Metropolitana – Iztapalapa, A. P. 55-534, 09340 Iztapalapa, México, D. F., Mexico

2. 

Departamento de Matemáticas, Universidad Autónoma Metropolitana – Iztapalapa, 09340 Iztapalapa, México, D. F., Mexico

Received  May 2002 Revised  December 2002 Published  June 2003

We consider the isosceles $3$--body problem with the third particle having a small mass which eventually tend to zero. Classical McGehee's blow up is not defined because the matrix of masses becomes degenerate. Following Elbialy [3] we perform the blow up using the Euclidean norm in the planar $3$--body problem. We then complete the phase portrait of the flow in the collision manifold giving the behavior of some branches of saddle points missing in [3]. The homothetic orbits within the fixed energy level then provide the necessary recurrence in order to build a symbolic dynamics. This is done following ideas of S. Kaplan [6] for the collinear $3$--body problem. Here the difficulty is the larger number of critical points.
Citation: Martha Alvarez-Ramírez, Joaquín Delgado. Blow up of the isosceles 3--body problem with an infinitesimal mass. Discrete & Continuous Dynamical Systems - A, 2003, 9 (5) : 1149-1173. doi: 10.3934/dcds.2003.9.1149
[1]

Samuel R. Kaplan, Ernesto A. Lacomba, Jaume Llibre. Symbolic dynamics of the elliptic rectilinear restricted 3--body problem. Discrete & Continuous Dynamical Systems - S, 2008, 1 (4) : 541-555. doi: 10.3934/dcdss.2008.1.541

[2]

Gianni Arioli. Branches of periodic orbits for the planar restricted 3-body problem. Discrete & Continuous Dynamical Systems - A, 2004, 11 (4) : 745-755. doi: 10.3934/dcds.2004.11.745

[3]

Hildeberto E. Cabral, Zhihong Xia. Subharmonic solutions in the restricted three-body problem. Discrete & Continuous Dynamical Systems - A, 1995, 1 (4) : 463-474. doi: 10.3934/dcds.1995.1.463

[4]

Giovanni F. Gronchi, Chiara Tardioli. The evolution of the orbit distance in the double averaged restricted 3-body problem with crossing singularities. Discrete & Continuous Dynamical Systems - B, 2013, 18 (5) : 1323-1344. doi: 10.3934/dcdsb.2013.18.1323

[5]

Daniel Offin, Hildeberto Cabral. Hyperbolicity for symmetric periodic orbits in the isosceles three body problem. Discrete & Continuous Dynamical Systems - S, 2009, 2 (2) : 379-392. doi: 10.3934/dcdss.2009.2.379

[6]

Marcel Guardia, Tere M. Seara, Pau Martín, Lara Sabbagh. Oscillatory orbits in the restricted elliptic planar three body problem. Discrete & Continuous Dynamical Systems - A, 2017, 37 (1) : 229-256. doi: 10.3934/dcds.2017009

[7]

Eduardo S. G. Leandro. On the Dziobek configurations of the restricted $(N+1)$-body problem with equal masses. Discrete & Continuous Dynamical Systems - S, 2008, 1 (4) : 589-595. doi: 10.3934/dcdss.2008.1.589

[8]

Jungsoo Kang. Some remarks on symmetric periodic orbits in the restricted three-body problem. Discrete & Continuous Dynamical Systems - A, 2014, 34 (12) : 5229-5245. doi: 10.3934/dcds.2014.34.5229

[9]

Nicola Soave, Susanna Terracini. Symbolic dynamics for the $N$-centre problem at negative energies. Discrete & Continuous Dynamical Systems - A, 2012, 32 (9) : 3245-3301. doi: 10.3934/dcds.2012.32.3245

[10]

Tiancheng Ouyang, Duokui Yan. Variational properties and linear stabilities of spatial isosceles orbits in the equal-mass three-body problem. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 3989-4018. doi: 10.3934/dcds.2017169

[11]

Marina Chugunova, Chiu-Yen Kao, Sarun Seepun. On the Benilov-Vynnycky blow-up problem. Discrete & Continuous Dynamical Systems - B, 2015, 20 (5) : 1443-1460. doi: 10.3934/dcdsb.2015.20.1443

[12]

Victor A. Galaktionov, Juan-Luis Vázquez. The problem Of blow-up in nonlinear parabolic equations. Discrete & Continuous Dynamical Systems - A, 2002, 8 (2) : 399-433. doi: 10.3934/dcds.2002.8.399

[13]

Qinglong Zhou, Yongchao Zhang. Analytic results for the linear stability of the equilibrium point in Robe's restricted elliptic three-body problem. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1763-1787. doi: 10.3934/dcds.2017074

[14]

Davide L. Ferrario, Alessandro Portaluri. Dynamics of the the dihedral four-body problem. Discrete & Continuous Dynamical Systems - S, 2013, 6 (4) : 925-974. doi: 10.3934/dcdss.2013.6.925

[15]

Nicola Soave, Susanna Terracini. Addendum to: Symbolic dynamics for the $N$-centre problem at negative energies. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3825-3829. doi: 10.3934/dcds.2013.33.3825

[16]

Sergey V. Bolotin, Piero Negrini. Variational approach to second species periodic solutions of Poincaré of the 3 body problem. Discrete & Continuous Dynamical Systems - A, 2013, 33 (3) : 1009-1032. doi: 10.3934/dcds.2013.33.1009

[17]

Pierpaolo Esposito, Maristella Petralla. Symmetries and blow-up phenomena for a Dirichlet problem with a large parameter. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1935-1957. doi: 10.3934/cpaa.2012.11.1935

[18]

Yihong Du, Zongming Guo, Feng Zhou. Boundary blow-up solutions with interior layers and spikes in a bistable problem. Discrete & Continuous Dynamical Systems - A, 2007, 19 (2) : 271-298. doi: 10.3934/dcds.2007.19.271

[19]

Yihong Du, Zongming Guo. The degenerate logistic model and a singularly mixed boundary blow-up problem. Discrete & Continuous Dynamical Systems - A, 2006, 14 (1) : 1-29. doi: 10.3934/dcds.2006.14.1

[20]

Qunyao Yin, Shiqing Zhang. New periodic solutions for the circular restricted 3-body and 4-body problems. Communications on Pure & Applied Analysis, 2010, 9 (1) : 249-260. doi: 10.3934/cpaa.2010.9.249

2017 Impact Factor: 1.179

Metrics

  • PDF downloads (4)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]