2003, 9(3): 585-602. doi: 10.3934/dcds.2003.9.585

Exponentially small splitting of homoclinic orbits of parabolic differential equations under periodic forcing

1. 

Freie Universität Berlin, Institut für Mathematik I, Arnimallee 2-6, 14195 Berlin, Germany

Received  November 2001 Revised  December 2002 Published  February 2003

Homoclinic orbits of semilinear parabolic partial differential equations can split under time-periodic forcing as for ordinary differential equations. The stable and unstable manifold may intersect transverse at persisting homoclinic points. The size of the splitting is estimated to be exponentially small of order exp$(-c/\epsilon)$ in the period $\epsilon$ of the forcing with $\epsilon \rightarrow 0$.
Citation: Karsten Matthies. Exponentially small splitting of homoclinic orbits of parabolic differential equations under periodic forcing. Discrete & Continuous Dynamical Systems - A, 2003, 9 (3) : 585-602. doi: 10.3934/dcds.2003.9.585

2017 Impact Factor: 1.179

Metrics

  • PDF downloads (4)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]