
Previous Article
On the fractal dimension of invariant sets: Applications to NavierStokes equations
 DCDS Home
 This Issue

Next Article
Transport in rotating fluids
Asymptotic analysis of a twodimensional coupled problem for compressible viscous flows
1.  Robert Bosch GMBH, FV/PTS, Postfach 30 02 40, D70442 Stuttgart, Germany 
2.  IRS, Universtät Stuttgart, D70550 Stuttgart, Germany 
3.  Mathematics Department, Central European University, H1051 Budapest, Hungary 
4.  Institute for Applied Analysis and Numerical Simulation, University of Stuttgart, 70550 Stuttgart, Germany 
[1] 
O. Guès, G. Métivier, M. Williams, K. Zumbrun. Boundary layer and long time stability for multiD viscous shocks. Discrete & Continuous Dynamical Systems  A, 2004, 11 (1) : 131160. doi: 10.3934/dcds.2004.11.131 
[2] 
ChiuYa Lan, ChiKun Lin. Asymptotic behavior of the compressible viscous potential fluid: Renormalization group approach. Discrete & Continuous Dynamical Systems  A, 2004, 11 (1) : 161188. doi: 10.3934/dcds.2004.11.161 
[3] 
John M. Hong, ChengHsiung Hsu, BoChih Huang, TziSheng Yang. Geometric singular perturbation approach to the existence and instability of stationary waves for viscous traffic flow models. Communications on Pure & Applied Analysis, 2013, 12 (3) : 15011526. doi: 10.3934/cpaa.2013.12.1501 
[4] 
Tong Tang, Hongjun Gao. Local strong solutions to the compressible viscous magnetohydrodynamic equations. Discrete & Continuous Dynamical Systems  B, 2016, 21 (5) : 16171633. doi: 10.3934/dcdsb.2016014 
[5] 
Takayuki Kubo, Yoshihiro Shibata, Kohei Soga. On some two phase problem for compressible and compressible viscous fluid flow separated by sharp interface. Discrete & Continuous Dynamical Systems  A, 2016, 36 (7) : 37413774. doi: 10.3934/dcds.2016.36.3741 
[6] 
Feimin Huang, Xiaoding Shi, Yi Wang. Stability of viscous shock wave for compressible NavierStokes equations with free boundary. Kinetic & Related Models, 2010, 3 (3) : 409425. doi: 10.3934/krm.2010.3.409 
[7] 
Xin Liu. Compressible viscous flows in a symmetric domain with complete slip boundary: The nonlinear stability of uniformly rotating states with small angular velocities. Communications on Pure & Applied Analysis, 2019, 18 (2) : 751794. doi: 10.3934/cpaa.2019037 
[8] 
Ciprian G. Gal, Maurizio Grasselli. Singular limit of viscous CahnHilliard equations with memory and dynamic boundary conditions. Discrete & Continuous Dynamical Systems  B, 2013, 18 (6) : 15811610. doi: 10.3934/dcdsb.2013.18.1581 
[9] 
Dongfen Bian. Initial boundary value problem for twodimensional viscous Boussinesq equations for MHD convection. Discrete & Continuous Dynamical Systems  S, 2016, 9 (6) : 15911611. doi: 10.3934/dcdss.2016065 
[10] 
Tohru Nakamura, Shuichi Kawashima. Viscous shock profile and singular limit for hyperbolic systems with Cattaneo's law. Kinetic & Related Models, 2018, 11 (4) : 795819. doi: 10.3934/krm.2018032 
[11] 
Laurence Cherfils, Madalina Petcu. On the viscous CahnHilliardNavierStokes equations with dynamic boundary conditions. Communications on Pure & Applied Analysis, 2016, 15 (4) : 14191449. doi: 10.3934/cpaa.2016.15.1419 
[12] 
Antoine Sellier. Boundary element approach for the slow viscous migration of spherical bubbles. Discrete & Continuous Dynamical Systems  B, 2011, 15 (4) : 10451064. doi: 10.3934/dcdsb.2011.15.1045 
[13] 
Hassen Arfaoui, Faker Ben Belgacem, Henda El Fekih, JeanPierre Raymond. Boundary stabilizability of the linearized viscous SaintVenant system. Discrete & Continuous Dynamical Systems  B, 2011, 15 (3) : 491511. doi: 10.3934/dcdsb.2011.15.491 
[14] 
Chengchun Hao. Cauchy problem for viscous shallow water equations with surface tension. Discrete & Continuous Dynamical Systems  B, 2010, 13 (3) : 593608. doi: 10.3934/dcdsb.2010.13.593 
[15] 
Eduard Feireisl, Dalibor Pražák. A stabilizing effect of a highfrequency driving force on the motion of a viscous, compressible, and heat conducting fluid. Discrete & Continuous Dynamical Systems  S, 2009, 2 (1) : 95111. doi: 10.3934/dcdss.2009.2.95 
[16] 
Bernard Ducomet, Šárka Nečasová. On the motion of rigid bodies in an incompressible or compressible viscous fluid under the action of gravitational forces. Discrete & Continuous Dynamical Systems  S, 2013, 6 (5) : 11931213. doi: 10.3934/dcdss.2013.6.1193 
[17] 
Zefu Feng, Changjiang Zhu. Global classical large solution to compressible viscous micropolar and heatconducting fluids with vacuum. Discrete & Continuous Dynamical Systems  A, 2019, 39 (6) : 30693097. doi: 10.3934/dcds.2019127 
[18] 
Yangyang Qiao, Huanyao Wen, Steinar Evje. Compressible and viscous twophase flow in porous media based on mixture theory formulation. Networks & Heterogeneous Media, 2019, 14 (3) : 489536. doi: 10.3934/nhm.2019020 
[19] 
Hong Zhou, M. Gregory Forest. Anchoring distortions coupled with plane Couette & Poiseuille flows of nematic polymers in viscous solvents: Morphology in molecular orientation, stress & flow. Discrete & Continuous Dynamical Systems  B, 2006, 6 (2) : 407425. doi: 10.3934/dcdsb.2006.6.407 
[20] 
Steinar Evje, Kenneth Hvistendahl Karlsen. Global weak solutions for a viscous liquidgas model with singular pressure law. Communications on Pure & Applied Analysis, 2009, 8 (6) : 18671894. doi: 10.3934/cpaa.2009.8.1867 
2018 Impact Factor: 1.143
Tools
Metrics
Other articles
by authors
[Back to Top]