2004, 11(4): 757-783. doi: 10.3934/dcds.2004.11.757

Exponentially small splitting for whiskered tori in Hamiltonian systems: continuation of transverse homoclinic orbits

1. 

Departament de Matemàtica Aplicada I, ETSEIB-Universitat Politècnica de Catalunya, Diagonal 647, E-08028 Barcelona, Spain

2. 

Departament de Matemàtica Aplicada I, Universitat Politècnica de Catalunya, Diagonal 647, 08028, Spain

Received  December 2002 Revised  October 2003 Published  September 2004

We consider an example of singular or weakly hyperbolic Hamiltonian, with $3$ degrees of freedom, as a model for the behaviour of a nearly-integrable Hamiltonian near a simple resonance. The model consists of an integrable Hamiltonian possessing a $2$-dimensional hyperbolic invariant torus with fast frequencies $\omega/\sqrt\varepsilon$ and coincident whiskers, plus a perturbation of order $\mu=\varepsilon^p$. We choose $\omega$ as the golden vector. Our aim is to obtain asymptotic estimates for the splitting, proving the existence of transverse intersections between the perturbed whiskers for $\varepsilon$ small enough, by applying the Poincaré-Melnikov method together with a accurate control of the size of the error term.
The good arithmetic properties of the golden vector allow us to prove that the splitting function has 4 simple zeros (corresponding to nondegenerate critical points of the splitting potential), giving rise to 4 transverse homoclinic orbits. More precisely, we show that a shift of these orbits occurs when $\varepsilon$ goes across some critical values, but we establish the continuation (without bifurcations) of the 4 transverse homoclinic orbits for all values of $\varepsilon\to0$.
Citation: Amadeu Delshams, Pere Gutiérrez. Exponentially small splitting for whiskered tori in Hamiltonian systems: continuation of transverse homoclinic orbits. Discrete & Continuous Dynamical Systems - A, 2004, 11 (4) : 757-783. doi: 10.3934/dcds.2004.11.757

2017 Impact Factor: 1.179

Metrics

  • PDF downloads (4)
  • HTML views (0)
  • Cited by (7)

Other articles
by authors

[Back to Top]