2005, 12(1): 1-12. doi: 10.3934/dcds.2005.12.1

Global well-posedness of the viscous Boussinesq equations

1. 

Department of Applied and Computational Mathematics, California Institute of Technology, Pasadena, CA 91125, United States

2. 

Department of Applied Mathematics, University of Colorado at Boulder, Boulder, CO 80309-0524

Received  November 2004 Revised  November 2004 Published  December 2004

We prove the global well-posedness of the viscous incompressible Boussinesq equations in two spatial dimensions for general initial data in $H^m$ with $m\ge 3$. It is known that when both the velocity and the density equations have finite positive viscosity, the Boussinesq system does not develop finite time singularities. We consider here the challenging case when viscosity enters only in the velocity equation, but there is no viscosity in the density equation. Using sharp and delicate energy estimates, we prove global existence and strong regularity of this viscous Boussinesq system for general initial data in $H^m$ with $m \ge 3$.
Citation: Thomas Y. Hou, Congming Li. Global well-posedness of the viscous Boussinesq equations. Discrete & Continuous Dynamical Systems - A, 2005, 12 (1) : 1-12. doi: 10.3934/dcds.2005.12.1
[1]

Šárka Nečasová, Joerg Wolf. On the existence of global strong solutions to the equations modeling a motion of a rigid body around a viscous fluid. Discrete & Continuous Dynamical Systems - A, 2016, 36 (3) : 1539-1562. doi: 10.3934/dcds.2016.36.1539

[2]

Yuming Qin, Yang Wang, Xing Su, Jianlin Zhang. Global existence of solutions for the three-dimensional Boussinesq system with anisotropic data. Discrete & Continuous Dynamical Systems - A, 2016, 36 (3) : 1563-1581. doi: 10.3934/dcds.2016.36.1563

[3]

Huicheng Yin, Lin Zhang. The global existence and large time behavior of smooth compressible fluid in an infinitely expanding ball, Ⅱ: 3D Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2018, 38 (3) : 1063-1102. doi: 10.3934/dcds.2018045

[4]

Jimmy Garnier, FranÇois Hamel, Lionel Roques. Transition fronts and stretching phenomena for a general class of reaction-dispersion equations. Discrete & Continuous Dynamical Systems - A, 2017, 37 (2) : 743-756. doi: 10.3934/dcds.2017031

[5]

Miao Liu, Weike Wang. Global existence and pointwise estimates of solutions for the multidimensional generalized Boussinesq-type equation. Communications on Pure & Applied Analysis, 2014, 13 (3) : 1203-1222. doi: 10.3934/cpaa.2014.13.1203

[6]

Igor Chueshov, Irena Lasiecka. Existence, uniqueness of weak solutions and global attractors for a class of nonlinear 2D Kirchhoff-Boussinesq models. Discrete & Continuous Dynamical Systems - A, 2006, 15 (3) : 777-809. doi: 10.3934/dcds.2006.15.777

[7]

D. L. Denny. Existence of solutions to equations for the flow of an incompressible fluid with capillary effects. Communications on Pure & Applied Analysis, 2004, 3 (2) : 197-216. doi: 10.3934/cpaa.2004.3.197

[8]

Myeongju Chae, Kyungkeun Kang, Jihoon Lee. Existence of smooth solutions to coupled chemotaxis-fluid equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (6) : 2271-2297. doi: 10.3934/dcds.2013.33.2271

[9]

Xiaojing Xu. Local existence and blow-up criterion of the 2-D compressible Boussinesq equations without dissipation terms. Discrete & Continuous Dynamical Systems - A, 2009, 25 (4) : 1333-1347. doi: 10.3934/dcds.2009.25.1333

[10]

Wenru Huo, Aimin Huang. The global attractor of the 2d Boussinesq equations with fractional Laplacian in subcritical case. Discrete & Continuous Dynamical Systems - B, 2016, 21 (8) : 2531-2550. doi: 10.3934/dcdsb.2016059

[11]

Marco Di Francesco, Alexander Lorz, Peter A. Markowich. Chemotaxis-fluid coupled model for swimming bacteria with nonlinear diffusion: Global existence and asymptotic behavior. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1437-1453. doi: 10.3934/dcds.2010.28.1437

[12]

Daniela Giachetti, Maria Michaela Porzio. Global existence for nonlinear parabolic equations with a damping term. Communications on Pure & Applied Analysis, 2009, 8 (3) : 923-953. doi: 10.3934/cpaa.2009.8.923

[13]

Qing Chen, Zhong Tan. Global existence in critical spaces for the compressible magnetohydrodynamic equations. Kinetic & Related Models, 2012, 5 (4) : 743-767. doi: 10.3934/krm.2012.5.743

[14]

Dugan Nina, Ademir Fernando Pazoto, Lionel Rosier. Controllability of a 1-D tank containing a fluid modeled by a Boussinesq system. Evolution Equations & Control Theory, 2013, 2 (2) : 379-402. doi: 10.3934/eect.2013.2.379

[15]

Christos Sourdis. Analysis of an irregular boundary layer behavior for the steady state flow of a Boussinesq fluid. Discrete & Continuous Dynamical Systems - A, 2017, 37 (2) : 1039-1059. doi: 10.3934/dcds.2017043

[16]

Shijin Ding, Qiang Du. The global minimizers and vortex solutions to a Ginzburg-Landau model of superconducting films . Communications on Pure & Applied Analysis, 2002, 1 (3) : 327-340. doi: 10.3934/cpaa.2002.1.327

[17]

Jianhua Huang, Tianlong Shen, Yuhong Li. Dynamics of stochastic fractional Boussinesq equations. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 2051-2067. doi: 10.3934/dcdsb.2015.20.2051

[18]

Dominique Blanchard, Nicolas Bruyère, Olivier Guibé. Existence and uniqueness of the solution of a Boussinesq system with nonlinear dissipation. Communications on Pure & Applied Analysis, 2013, 12 (5) : 2213-2227. doi: 10.3934/cpaa.2013.12.2213

[19]

Linghai Zhang. Decay estimates with sharp rates of global solutions of nonlinear systems of fluid dynamics equations. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 2181-2200. doi: 10.3934/dcdss.2016091

[20]

Shijin Ding, Boling Guo, Junyu Lin, Ming Zeng. Global existence of weak solutions for Landau-Lifshitz-Maxwell equations. Discrete & Continuous Dynamical Systems - A, 2007, 17 (4) : 867-890. doi: 10.3934/dcds.2007.17.867

2016 Impact Factor: 1.099

Metrics

  • PDF downloads (1)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]